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Lecture 7: Stable Hebbian plasticity
We seek stable Hebbian plasticity, without exponential
growth of synaptic weights. We compare and analyze
three schemes: Weight saturation, synaptic
normalization (rigidly keeping constant sum of weights),
and Oja rule (dynamically approaching steady-state of
total squared weights). We test performance for
biological example: development of ‘ocular dominance’
(monocular cortical neurons arise by ‘growing’ and
‘pruning’ synaptic weights from both eyes). First, analyze
different input statistics (matrices of correlation Q and
covariance C ), correlated, anti-correlated, partially
correlated, with eigenvectors in ‘same’ and ‘different’
directions. Next compare three schemes. Desired
outcome (monocular neurons) obtained only from
combination of Oja and covariance rules: development
of synaptic weights is governed by ‘different’ eigenvector
and guarantees monocular steady-state.
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Organization of lecture

I 1 Recap
I 2 Stable Hebbian learning rules

I Weight saturation
I Subtractive normalization
I Oja rule

I 3 Biological example: left and right eye statistics
I General statistics
I Correlation – Anti-correlation – Partial correlation

I 4 Biological example: development of ocular dominance
I Weight saturation
I Subtractive normalization
I Oja rule

I 5 Summary
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1 Recap
I In a recurrently connected network, synaptic strengths

determine the propagation of activity.
I When synapses exhibit Hebbian plasticity, the pre- and

post-synaptic activities in turn determine the development of
synaptic strengths.

I Controlling this coupled dynamics of activity (faster) and
synaptic strengths (slower) has been likened to “taming the
beast”.
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Correlation-driven plasticity

Hebbian plasticity without a threshold is driven by correlations
(average products of absolute inputs):

τw
dw
dt

= 〈v u〉

τw
dw
dt

= Q w , Q ≡ 〈uu〉, v = w · u

u(t)

v(t)

w(t)
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Covariance-driven plasticity

Hebbian plasticity with a threshold is driven by covariances
(average products of relative inputs, i.e., deviations from mean):

τw
dw
dt

= 〈v (u − 〈u〉)〉

τw
dw
dt

= C w , C ≡ 〈uu〉 − 〈u〉2, v = w · u

u(t)

v(t)

w(t)
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Correlations and covariances

Correlations reveal which inputs vary together around zero (‘form a
team’). Covariances reveal which inputs vary together around their
mean. Correlation and covariance are identical for zero-mean input.
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Principal / dominant eigenvector
The principal or dominant eigenvector of a correlation/covariance
matrix reveals the the direction in input space around which the
inputs are most correlated (vary together most closely). It
identifies the ‘strongest team’ among the inputs.
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Synaptic weights align with principal eigenvector

Synaptic weights grow exponentially along all eigenvectors of C ,
but most rapidly along the principal eigenvector. Thus, synaptic
weights align with the principal eigenvector.
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2 Stable Hebbian Learning rules

We now consider ways of restraining the exponential growth of
synaptic weights and take a first step towards “taming the beast”.
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2.1 Weight saturation

If synaptic weights are bounded, limitless growth is (trivially)
prevented:

τw
dw
dt

= 〈v (u − 〈u〉)〉, 0 ≤ wi ≤ 1

However, as we will see later, final weights depend largely on initial
weights (and the choice of maximal weight). Input statistics plays
only a limited role. In short, this rule does not guarantee the
desired outcome (ocular dominance).
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2.2 Synaptic normalization

If the total synaptic weight is fixed, one synapse can be
strengthened only at the expense of weakening others. Such a
constraint can be enforced rigidly at all times:

τw
dw
dt

= 〈v (u − ū)〉, ū =
1

N

N∑
i=1

ui

Averaging over all wi , we see that this rule obviously imposes
stability

τw
dw̄

dt
= 〈v (ū − ū)〉 = 0, w̄ =

1

N

N∑
i=1

wi

Plus point: development is activity-driven. Minus points: summed
weights don’t grow, requires ‘cross-talk’ between synapses, does
not guarantee desired outcome (as we will see later).
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ctd (on board)
For the 2D case, we reformulate this in terms of the correlation
matrix Q, substituting v = w · u:

τw
dw
dt

= 〈w · u
[
u − 1

2
(u1 + u2)

]
〉 =

=

〈(
u21 u1u2
u1u2 u22

)〉(
w1

w2

)
−
〈

(w1u1 + w2u2)
1

2
(u1 + u2)

〉
=

=

〈(
u21 u1u2
u1u2 u22

)〉 (
w1

w2

)
− 1

2
〈w1u

2
1 + w2u1u2 + w1u1u2 + w2u

2
2〉 =

= Q ·w − 1

2
nT ·Q ·w

This expresses synaptic normalization in terms of the correlation
matrix Q.

Jochen Braun 13



2.3 Oja rule

Alternatively, normalization can be imposed dynamically in the
limit of large times (‘in the long run’), with the ‘Oja rule’:

τw
dw
dt

= 〈v u − α v2 w〉

Multiplying (dot-product) this equation with w , we find a
steady-state for the total squared weights:

τw
d |w |2

dt
= 〈v2〉 − α 〈v2〉 |w |2

τw
d |w |2

dt
= 0 ⇒ |w ss |2 = 1/α

The Oja rule is highly competitive and small weights are reduced
disproportionately (‘poor get poorer’).
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ctd

The Oja rule can also be reformulated in terms of correlations:

τw
dw
dt

= 〈v u − α v2 w〉, v = u ·w

τw
dw
dt

= Q w − α
(
wTQ w

)
w

where we have used

〈(u ·w)2〉 = wTQ w

Graphical illustration of linear algebra equivalence.
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Linear analysis of Oja rule
The linear analysis is carried out most easily in eigenvector
coordinates. Each weight component wµ represents an eigenvector
eµ:

w(t) =
∑
µ

wµ(t) eµ Q · eµ = λµ eµ

Using

Q ·w =
∑
µ

wµ(t) Q · eµ =
∑
µ

wµ(t)λµ eµ

we can rewrite

τw
dw
dt

= Q ·w − α
(
wT ·Q ·w

)
w

as

τw
dwµ
dt

=

(
λµ − α

∑
ν

λν w
2
ν

)
wµ
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ctd

τw
dwµ
dt

=

(
λµ − α

∑
ν

λν w
2
ν

)
wµ

The bracket term is the learning rate for components aligned with
eigenvector µ. As this rate is largest for the dominant eigenvector
1, the sum will come to be dominated by its largest term

α
∑
ν

λν w
2
ν −→ αλ1 w

2
1

so that

τw
dw1

dt
=
(
1− αw2

1

)
λ1 w1

Accordingly, the weights will align with the largest eigenvector.
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2 Points to note

I Several schemes have been proposed to stabilize Hebbian
learning.

I Weight saturation stabilizes development, but looses input
dependence.

I Synaptic normalization subtracts the average synaptic weight,
rigidly keeping constant summed weights:

τw
dw
dt

= Q w − 1

2
nTQ w

I The Oja rule subtracts a more complex term, dynamically
approaching a steady-state for total squared weights:

τw
dw
dt

= Q w − α
(
wTQ w

)
w

I Next we compare these schemes for a biological example.
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3 Biological example: left and right eye statistics

We compare stabilization schemes for a biological example.
In young animals, the development of sensory pathways is

shaped by an interplay of sensory experience and developmental
mechanisms. The development of ocular dominance in the early
visual pathway is a well-studied example

Initially, visual neurons receive projections from both left and
right eyes. During certain ‘critical periods’ of development, these
connections are pruned such that most neurons come to be
‘dominated’ by input from one or the other eye.
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3.1 General statistics of left and right eye inputs

For simplicity, we assume that the left and right eye provide binary
inputs with balanced probabilities:

uL, uR ∈ {0, 1}, p0 = p1 = 1/2

In other words, both uL and uR take values of 0 or 1 with equal
probability.

We leave as a variable parameter the probability p11 that both eye
inputs are 1. The probabilities for other combinations follow:

p01 = p1 − p11 = 1/2− p11, p10 = p1 − p11 = 1/2− p11,

p00 = 1− p11 − p01 − p10 = p11
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Probability table

uL = 1 uL = 0

uR = 1 p11 p1 − p11 p1
uR = 0 p1 − p11 ? 1− p1

p1 1− p1 1

p00 = 1− p01 − p10 − p11 = 1− 2p1 + p11

uL = 1 uL = 0

uR = 1 p11 p1 − p11 p1
uR = 0 p1 − p11 1− 2p1 + p11 1− p1

p1 1− p1 1
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Correlations and covariances
Correlations are ‘mean products’

〈uLuL〉 = p0 · 0 · 0 + p1 · 1 · 1 = p1 = 1/2

〈uRuR〉 = p0 · 0 · 0 + p1 · 1 · 1 = p1 = 1/2

〈uRuL〉 = p00 · 0 · 0 + p01 · 0 · 1 + p10 · 1 · 0 + p11 · 1 · 1 = p11

Covariances are ‘mean products’ minus ‘product of means’

〈uLuL〉 − 〈uL〉2 = 1/2− p21 = 1/4

〈uRuR〉 − 〈uR〉2 = 1/2− p21 = 1/4

〈uRuL〉 − 〈uL〉〈uR〉 = p11 − p21 = p11 − 1/4
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ctd

Q =

(
〈uLuL〉 〈uLuR〉
〈uRuL〉 〈uRuR〉

)
=

(
1/2 p11
p11 1/2

)
≡
(

qS qD
qD qS

)

C =

(
1/4 p11 − 1/4

p11 − 1/4 1/4

)
=

(
cS cD
cD cS

)

Development will be governed by eigenvectors and eigenvalues! For
a symmetric 2D matrix, we expect eigenvectors in ‘same’ and in
the ‘different’ direction.

esame =

(
1/√2
1/√2

)
ediff =

(
1/√2
−1/√2

)
Which direction dominates and has largest eigenvalue?
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3.2 Eyes with correlated activity
At one extreme, activities uR and uL are perfectly correlated
(p11 = 1/2) (i.e., half on, half off, but always the same):

p(uL, uR) uL p(uR)

0 1

uR
0 0.5 0 0.5
1 0 0.5 0.5

p(uL) 0.5 0.5

qS = p1 · 1 · 1 = 1/2
qD = p11 · 1 · 1 = 1/2

Q =

(
1/2 1/2
1/2 1/2

)
cS = p1 · 1 · 1− (p1 · 1)2 = 1/4
cD = p11 · 1 · 1− (p1 · 1)2 = 1/4

C =

(
1/4 1/4
1/4 1/4

)
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ctd

The resulting eigenvalues and eigenvectors of Q and C ,
respectively, are

e1,2 =

(
1/√2
1/√2

)
,

(
1/√2
−1/√2

)
λ1,2 = 1, 0

e1,2 =

(
1/√2
1/√2

)
,

(
1/√2
−1/√2

)
λ1,2 = 1/2, 0

In both cases, esame dominates!

For perfectly correlated inputs, synaptic weights can grow only in
‘same’ direction, never in ‘different’ direction!
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3.3 Eyes with anti-correlated activity
At another extreme, activities uR and uL are perfectly
anti-correlated (p11 = 0) (i.e., half on, half off, always different):

p(uL, uR) uL p(uR)

0 1

uR
0 0 0.5 0.5
1 0.5 0 0.5

p(uL) 0.5 0.5 1

qS = p1 · 1 · 1 = 1/2
qD = p11 · 1 · 1 = 0

Q =

(
1/2 0
0 1/2

)
cS = p1 · 1 · 1− (p1 · 1)2 = 1/4
cD = p11 · 1 · 1− (p1 · 1)2 = −1/4

C =

(
1/4 −1/4
−1/4 1/4

)
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ctd

The resulting eigenvalues and eigenvectors of Q and C ,
respectively, are

e1,2 =

(
1
0

)(
0
1

)
, λ1,2 = 1/2, 1/2

√
2 e1,2 =

(
−1
1

)
,

(
1
1

)
λ1,2 = 1/2, 0

In both cases, edifferent dominates!

For perfectly anti-correlated inputs, synaptic weights can grow only
in ‘different’ direction, never in ‘same’ direction!
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3.4 Eyes with partially correlated activity
A third possibility is that activities are partially correlated

p(uL, uR) uL p(uR)

0 1

uR
0 1/8 3/8 1/2
1 3/8 1/8 1/2

p(uL) 1/2 1/2 1

p0 = p1 = 1/2, p00 = p11 = 1/8, p01 = p10 = 3/8

qS = p1 · 1 · 1 = 1/2
qD = p11 · 1 · 1 = 1/8

Q =

(
1/2 1/8
1/8 1/2

)
cS = p1 · 1 · 1− (p1 · 1)2 = 1/4
cD = p11 · 1 · 1− (p1 · 1)2 = −1/8

C =

(
1/4 −1/8
−1/8 1/4

)
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Partial correlation

The resulting eigenvectors and eigenvalues are:

e1,2 =

(
1/√2
1/√2

)
,

(
1/√2

−1/√2

)
λ1,2 = 5/8, 3/8

Correlations are dominated by the “same” eigenvector.

e1,2 =

(
1/√2

−1/√2

)
,

(
1/√2
1/√2

)
λ1,2 = 3/8, 1/8

Covariances are dominated by the “different” eigenvector.

Jochen Braun 29



3 Points to note

I Binary inputs from two eyes may exhibit different correlational
statistics.

I The correlation/covariance matrices and their principal
eigenvectors capture these differences.

I Correlation entails a large “same” eigenvector (1, 1).

I Anti-correlation entails a large “different” eigenvector (1,−1).

I In intermediate cases, both eigenvectors have non-zero
eigenvalues.

I Specifically, the “same” eigenvector dominates correlations Q,
the “different” eigenvector dominates covariances C .

We now apply different stable learning schemes to the
development of ocular dominance.
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4 Biological example: development of ocular
dominance

What plasticity rule could ‘prune’ the initial, unspecific connections
such that neurons come to be completely dominated by one eye
or the other? On other words, such that neurons become
completely monocular?

To obtain complete ‘eye dominance’, input statistics must be
dominated by a ‘different eigenvector’ (1,−1). Thus, input must
be at least partially anti-correlated and development must follow a
covariance rule!
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4.1 Weight saturation
As a first attempt to stabilize the development of ocular
dominance, we add weight saturation to a covariance rule:

τw
dw
dt

= C w , 0 ≤ wL,R ≤ 1

uL(t) 

v(t) 

uR(t) 

wL(t) wR(t) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
R

w
L
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Weight saturation

I ‘Different’ eigenvector dominates, due to partial
anti-correlation and covariance rule.

I Development results sometimes in different weights
(wL 6= wR), sometimes in identical weights (wL = wR).

I Outcome depends on initial weights and saturation level (see
Exercise 3).

I Thought experiment: use correlation rule instead instead of
covariance rule.

I ‘Same’ eigenvector dominates.

I Development always results in identical weights (wL = wR).
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Weight saturation with correlation rule

τw
dw
dt

= Q w , 0 ≤ wL,R ≤ 1

uL(t) 

v(t) 

uR(t) 

wL(t) wR(t) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wR(t)

w
L(
t)
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4.2 Subtractive normalization

Let’s try to stabilize a correlation rule by adding subtractive
normalization:

τw
dw
dt

= Q w − 1

2

(
nTQ w

)
n, 0 ≤ wL,R ≤ 1

Recall that the “same” eigenvector dominates, so Hebbian
development should favor ‘binocular’ inputs.

We will see that synaptic normalization prevents this outcome.
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ctd

uL(t) 

v(t) 

uR(t) 

wL(t) wR(t) 
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ctd

To understand this unexpected outcome, we arrange the dynamic
equation in eigenvector coordinates

w = w+ + w−, w+ ≡ w+ e1, w− ≡ w− e2,

We find that

τw
dw+

dt
= Q w+ −

1

2

(
nTQ w+

)
n = 0

τw
dw−
dt

= Q w− −
1

2

(
nTQ w−

)
n = (qS − qD) w−

Normalization prevents any growth along n, which aligns with to
e1 = esame . All growth is along e2 = ediff .
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Proof

τw
dw
dt

= Q w − 1

2

(
nTQ w

)
n

τw
d

dt

(
wL

wR

)
=

(
qS qD
qD qS

)(
wL

wR

)
− 1

2
(1 1)

(
qS qD
qD qS

)(
wL

wR

)

τw
d

dt

(
wL

wR

)
=

(
qSwL + qDwR

qDwL + qSwR

)
− 1

2
(qSwL + qDwR + qDwL + qSwR)
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(on board)

w+ = wL + wR

τw
d

dt
w+ = (qSwL + qDwR + qDwL + qSwR)−

− (qSwL + qDwR + qDwL + qSwR) = 0

w− = wL − wR

τw
d

dt
w− = (qSwL + qDwR)− (qDwL + qSwR) = (qS − qD) w−
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Subtractive normalization

I Normalization prevents growth along the dominant (same)
eigenvector.

I Any growth is along the second (different) eigenvector.

I Development always results in different weights (wL 6= wR).

I The typical outcome, partial dominance, is not the desired
outcome.

I Development rigidly maintains the initial sum of weights.

I Requires interactions (‘cross talk’) between synapses.

I Is considered biologically unrealistic.
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4.3 Oja with covariance rule

We stabilize a covariance rule by subtracting an Oja term:

τw
dw
dt

= C w − α
(
wT C w

)
w =

=

(
cS cD
cD cS

)(
wL

wR

)
− α

(
cSw

2
L + 2cDwLwR + cSw

2
R

)( wL

wR

)
,

with

wL,R ≥ 0

Recall that the Oja term limits the synaptic weights to

|w2| = w2
L + w2

R ≤ 1/α

Jochen Braun 41



For α = 1/2 the weights are limited to |w2| ≤ 2

uL(t) 

v(t) 

uR(t) 

wL(t) wR(t) 

0 0.5 1 1.5
0

0.5

1

1.5

w
R

w
L

e1
e2

The weights consistently grow in the direction of the principal
eigenvector (‘different’ direction), leading to complete
dominance (‘monocular neurons’), the desired outcome.
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Oja with correlation rule

Thought experiment: use correlation rule instead instead of
covariance rule. Can an Oja term stabilize a correlation rule?

τw
dw
dt

= Q w − α
(
wT Q w

)
w =

=

(
qS qD
qD qS

)(
wL

wR

)
− α

(
qSw

2
L + 2qDwLwR + qSw

2
R

)( wL

wR

)
,

with

wL,R ≥ 0

Development produces stable outcome. ‘Same’ eigenvector
dominates and outcome is identical weights (wL = wR), or
binocular neurons.
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ctd

uL(t) 

v(t) 

uR(t) 

wL(t) wR(t) 

0 0.5 1 1.5
0

0.5

1

1.5

w
R

w
L

e1
e2

The weights consistently grow in the direction of the principal
eigenvector (‘same’ direction), leading to binocular neurons.
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ctd
Consider highly (but not completely) anti-correlated Q. Outcome
unchanged:

Q =

(
1/2 1/40
1/40 1/2

) √
2 e1,2 =

(
1

1

)
,

(
1

−1

)
λ1,2 = 21/40, 19/40

uL(t) 

v(t) 

uR(t) 

wL(t) wR(t) 
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ctd
Consdier completely anti-correlated Q, with degenerate
eigenvectors. Development amplifies initial imbalance in w until
maximal sum of squared weights is reached:

Q =

(
1/2 0
0 1/2

)
e1,2 =

(
1
0

)
,

(
0
1

)
λ1,2 = 1/2, 1/2

uL(t) 

v(t) 

uR(t) 

wL(t) wR(t) 
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Oja rule

I An Oja term stabilizes either covariance and correlation rules.

I The sum of squared weights approaches a fixed value 1/α.

I Initially, weights grow in all directions.

I Eventually, weights align with the principal eigenvector.

I The dominant eigenvector is the ‘same’ direction for
correlation and ‘different’ direction for covariance rule.

I Combination of Oja and covariance rules ensure the desired
outcome: ocular dominance.

I Next lecture: a correlation rule can produce ocular
dominance with intra-cortical competition.
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5 Summary

I We have introduced different ways of “taming” the growth of
synaptic weights in Hebbian development (HD).

I Weight saturation sets an upper bound:

wi ≤ wmax

I Subtractive normalization rigidly maintains summed weights:

τw
dw
dt

= Q w − 1

2

(
nTQ w

)
n

I The Oja rule dynamically approaches steady-state level of
summed squared weights:

τw
dw
dt

= C w − α
(
wTC w

)
w
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Summary, ctd

I In the development of ocular dominance, the goal is to
increase input disparity, so that the post-synaptic cells
becomes “monocular” (i.e., dominated by either eye).

I We tried to ensure this outcome with Hebbian rules, assuming
partially anti-correlated input.

I When HD is stabilized by weight saturation, the
post-synaptic cell often becomes “monocular” but can
sometimes remain “binocular”.
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Summary, ctd

I When HD is stabilized by subtractive normalization,
post-synaptic cells become biased, but not completely
“monocular”.

I Also, sum of weights cannot grow and synapses must interact.

I Considered biologically unrealistic.
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Summary, ctd

I When HD is stabilized by the Oja rule, post-synaptic cells
become completely ‘monocular’ if we assume a covariance
rule. (〈u〉 > 0).

0 0.5 1 1.5
0
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w
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w
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I With a correlation rule, post-synaptic cells become completely
‘binocular’.
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Next: More
Hebbian development
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