Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Cologne
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhine-Main Region
      • Bernstein Node Taiwan
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Language improves learning in artificial networks
Bonn – September 5, 2024

Language improves learning in artificial networks

Bonn researchers get to the bottom of the social aspect of
communication for mental activity

If an artificial network communicates with a second artificial network throughmessages, the second 'student network' can learn faster

Bernstein member involved: Tatjana Tchumachenko

Across all species, critical skills are passed on from parents to offspring through communication. Researchers at the University Hospital Bonn (UKB) and the Researchers at the University of Bonn showed that effective communication relies on how both the sender and receiver represent information. Their study reveals how this process underlies training efficacy and task performance. Their results have been published in the journal “Nature Communications”.

Communication – be it through sounds, smells or movements – is crucial for survival. Ist social aspect is fundamental to cognition, as our task descriptions in the brain are shaped not only by sensory experiences, but also by the information communicated to us. “We know from our everyday lives that social communication is essential to our learning abilities in the real world, which is summed up by the saying ‘teaching is learning for the second time,” says Prof. Tatjana Tchumatchenko, from the Institute of Experimental Epileptology and Cognition Research at the UKB and member of the Transdisciplinary Research Area (TRA) “Modelling” at the University of Bonn.
In a novel study, the Bonn researchers used artificial networks as agents that took on the roles of teachers and students. The teacher network learned to solve a maze and then guided the student network through the task by transmitting a message. This setup allowed the researchers to investigate how language-like communication between artificial agents
improves learning and task performance.

The brain creates abstractions for our real world to be shared

The results showed that both roles can develop a language that enables the student to learn from the teacher. Interestingly, this language was influenced by both the task at hand and the learner’s performance. “What we found is consistent with what is known about language formation in animals,” says Carlos Wert-Carvajal, co-corresponding author and PhD student at the University of Bonn in Prof. Tchumatchenko’s research group at the UKB. He emphasizes that the way our brain encodes our world is not only determined by our own experiences but also creates abstractions that are understandable to others: “For example, we don’t say ‘sweet, crunchy, round red or green fruit,’ but use the single word ‘apple.’ Such a word exists because our language has evolved to represent a shared experience that provides a pleasant reward.” In other words, every language must describe the world as efficiently as possible. This efficiency meant a concise message that contained as much information as possible. Good language had to combine both the teacher’s and trainee’s internal descriptions of the task and the actual characteristics of the real world. “When we gave feedback on how well the trainee did the task, the teacher changed his language to convey more useful information,” explains first author Tobias Wieczorek, who until recently was a master’s student at the University of Bonn in the Tchumatchenko group at UKB. This process shows that effective communication is a two-way process. “Both the sender and the receiver must work together to ensure that the information exchanged is clear, precise, and truly useful,” says Prof. Tchumatchenko, who led the study.

Language closes the circle in communication as a shared experience

Remarkably, by “closing the loop” – that is, by feeding the language of the learner back to
itself – the Bonn researchers were able to enable learners to teach each other. Despite
lacking explicit teaching skills, the agents effectively communicated essential information and demonstrated the robustness of the language they had developed. “Although they did not know how to ‘teach’, they were still able to use their language to convey important
information,” says co-corresponding author Dr. Maximilian Eggl, who until recently was a
postdoc at the University of Bonn in Prof. Tchumatchenko’s research group at UKB.

This research highlights the fundamental role of language-like communication as a shared
cognitive experience and demonstrates its critical importance for learning and generalization. The results provide valuable insights into the design of biological and artificial communication systems that optimize learning and task performance in different environments.

Further links

Original press release

> more

Scientific publication

> more

Language improves learning in artificial networks

12. September 2024/in /by Alexandra Stein

Kontakt Aktuelles

Contact

Press contact

Dr. Inka Väth
Deputy Press Officer at the University Hospital Bonn (UKB)
Communications and Media Office at Bonn University Hospital

(+49) 228 287-10596
inka.vaeth@ukbonn.de

Scientific contact

Prof. Tatjana Tchumatchenko
Institute for Experimental Epileptology and Cognitive Research
Bonn University Hospital
TRA "Modeling", University of Bonn

tatjana.tchumatchenko@uni-bonn.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}