Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Cologne
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhine-Main Region
      • Bernstein Node Taiwan
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Using AI to understand brain function
Göttingen – December 3, 2024

Using AI to understand brain function

The European Research Council (ERC) has awarded a Consolidator Grant to the computer scientist and neuroscientist Professor Fabian Sinz at the University of Göttingen. The project “Vision2Action: A data-driven computational framework to discover how behavior impacts processing in mouse visual cortex” has been awarded around two million Euro for five years. In the project, Sinz and his team plan to develop new machine learning methods to understand how motor movement influences visual processing in the brain.

Prof. Dr. Fabian Sinz, Photo: Emmanouil Froudarakis

Bernstein members involved: Fabian Sinz

“Our movements influence how we perceive the world,” explains Sinz. “However, the interaction between movement and visual perception in natural environments is so complex that we need machine learning approaches to capture and understand these computational processes in the brain.” This effect is particularly pronounced in the visual cortex of rodents, where movement influences even very early processing stages of the visual pathway. However, the underlying organizational principles in the brain are currently not well understood.

In order to approach this question, the research team will use a computer-assisted approach. They will use deep learning models to create a “digital twin” of the visual system of freely moving mice. “This digital twin enables us to use computer simulations to analyse the complex dynamics between movement, brain states, and visual processing,” explains Sinz. “The simulations make it possible for us to explore different hypotheses that would be difficult to test otherwise.” The predictions obtained from the AI models can then be tested in subsequent experiments.

The research combines state-of-the-art machine learning methods with experimental neuroscience and is carried out in close collaboration with the Universities of Bonn in Germany and Stanford in the US. Sinz has been Professor of Machine Learning at the Institute of Computer Science and a board member of the Campus Institute Data Science (CIDAS) at the University of Göttingen since 2021. He previously worked as a group leader at the University of Tübingen and as an assistant professor at Baylor College of Medicine in Houston (USA), where he already successfully developed deep learning models for analysing brain activity.

The project promises new insights into the organization of the visual system, as well as the development of innovative AI methods for neuroscience. These computational approaches could also be ground-breaking for other areas of brain research in the future, as they provide new ways of using machine learning to better understand complex biological systems in natural environments.

Further links

Original press release

> more

Using AI to understand brain function

6. December 2024/in /by Alexander Lammers

Kontakt Aktuelles

Contact

Prof. Dr. Fabian Sinz

University of Göttingen
Institute of Computer Science
Goldschmidtstraße 1
37077 Göttingen
Germany

+49 (0)551 39-21258
sinz@uni-goettingen.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}