Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Cologne
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhine-Main Region
      • Bernstein Node Taiwan
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / The visual system through the eyes of AI
Göttingen, Germany – April 10, 2025

The visual system through the eyes of AI

Using artificial intelligence to understand the visual system in the brain: An international research team (MICrONS) with the participation of the University of Göttingen has developed new AI models to decode the complex processing of visual stimuli in the brain. The researchers investigated how the shape, connectivity pattern and activity of nerve cells in the mouse brain are related. The project's key findings have been published in a series of articles in the journals Nature and Nature Communications.

The image shows more than 1,000 of the 120,000 brain cells (neurons + glia) reconstructed as part of the MICRONS project. Each reconstructed neuron appears in a different, random color. This is a symbolic representation, but not an actual rendering of the dataset – there are far more recorded neurons than those depicted.

Bernstein members involved: Alexander Ecker, Fabian Sinz, Philipp Berens

The study “Foundation Model of Neural Activity Predicts Response to New Stimulus Types and Anatomy” presents a new AI model that has learned from large amounts of data and can be flexibly applied to new tasks. The team analyzed over 135,000 nerve cells in the visual system of mice and developed a model that reliably predicts neuronal responses to new stimuli – even to those it has never seen during training. “Our model can, for example, predict responses to coherent motion patterns, noise patterns and static natural images without ever having been confronted with these types of stimuli,” explains Prof. Dr. Fabian Sinz from the Institute of Computer Science and the Campus Institute of Data Science at the University of Göttingen, who co-developed the model. These types of stimuli are crucial for understanding neural information processing.

In a further study, the team examined the shape and structure of certain nerve cells in the visual area of the brain, known as the visual cortex. “An unsupervised map of excitatory neurons’ dendritic morphology in the mouse visual cortex” shows that the so-called pyramidal cells – cells with a pyramidal shape that transmit important signals to other cells in the visual cortex – are more diverse than previously assumed. The head of the study, Prof. Dr. Alexander Ecker from the same institute, explains: “We have developed machine learning methods that encode the complex 3D shape of a nerve cell in a kind of barcode. These barcodes can then be visualized and analyzed.” Based on 30,000 pyramidal cells, the researchers found that these exhibit fluid transitions between cell types, rather than clearly defined types.

Numerous research institutions were involved in the MICrONS project, which produced the two studies, including Baylor College of Medicine, the Allen Institute for Brain Science, and Princeton University. As part of this project, the team created the “MICrONS Multi-Area Dataset”. It includes both the structure and connectivity of nerve cells and their response characteristics to various visual stimuli. It is currently the largest dataset of its kind ever collected in a mammalian brain. The data were described in the main study “Functional Connectomics Spanning Multiple Areas of Mouse Visual Cortex”.

The models co-developed by the Göttingen researchers were used, among other things, to create a “digital twin” of the nerve cells in the MICrONS data set. This digital twin was able to successfully predict the shape and structure of pyramidal cells without using anatomical information for training. This suggests that the functional and anatomical properties of nerve cells are closely linked.

The research results provide important insights into the organization of the brain and could help to make neuroscientific experiments more efficient in the future. Instead of conducting elaborate and time-consuming experiments in vivo – i.e. in living animals – researchers could first conduct experiments in silico – i.e. in a model – to identify promising hypotheses and then verify them in experiments.

Further links

Original press release

> more

Original publication (1)

> more

Original publication (2)

> more

More information about the project

> more

The visual system through the eyes of AI

14. April 2025/in /by Elena Reiriz Martinez

Kontakt Aktuelles

Contact

Prof. Dr. Fabian Sinz

Scientific contact
University of Göttingen
Institute of Computer Science
Research Group Machine Learning
Goldschmidtstraße 1
37077 Göttingen
Germany

+49 0551 39-21258
sinz@uni-goettingen.de

Prof. Dr. Alexander S. Ecker

Scientific contact
University of Göttingen
Institute of Computer Science
Research Group Neural Data Science
Goldschmidtstraße 1
37077 Göttingen
Germany

+49 0551 39-21272
ecker@cs.uni-goettingen.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}