Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Cologne
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhine-Main Region
      • Bernstein Node Taiwan
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Biological intelligence as the basis for new AI systems
Mannheim, Germany – December 4, 2025

Biological intelligence as the basis for new AI systems

A new project led by the CIMH is investigating how insights into learning processes in animal brains can be used to make artificial intelligence more flexible and efficient.

Biological systems are the model: The aim of the research project is to pave the way for AI models that can adapt to new situations independently, flexibly, and quickly without having to be completely retrained each time. Photo: stock.adobe.com © pinporn manosri

Bernstein member involved: Daniel Durstewitz

In a new research project led by the Central Institute of Mental Health (CIMH) in Mannheim, scientists are investigating how insights into learning processes in animal brains can be used to make artificial intelligence (AI) systems more flexible and efficient. The project, titled NAILIt – Neuro-inspired AI for Learning and Inference in non-stationary environments – is funded by the Federal Ministry for Research, Technology and Space (BMFTR) with 1.6 million euros over three years.
In NAILIt, researchers at the CIMH are collaborating with colleagues from the Hector Institute for Artificial Intelligence in Psychiatry (HITKIP), the Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University, and the Center for Integrative Physiology and Molecular Medicine (CIPMM) at Saarland University. Together, they aim to develop new approaches that will allow future AI systems to adapt to changing conditions – such as new tasks or unexpected situations – with the flexibility and versatility known from living organisms.

Project partners working alongside project manager Prof. Dr. Daniel Durstewitz (ZI) and his employees are Prof. Dr. Georgia Koppe (HITKIP, IWR) and Prof. Dr. Jonas-Frederic Sauer (CIPMM) with their teams.

Research at the interface of biology and artificial intelligence

At the core of NAILIt lies the question of how the learning principles observed in animal brains can be transferred to Artificial Intelligence (AI). Whereas modern AI models – such as large language models – are typically trained once on massive datasets and then operate with fixed parameters, animals continually adjust their behavior to new situations. They do so rapidly, efficiently, and with minimal effort. Such adaptive capabilities are becoming increasingly important for AI systems used in real-world scenarios, for example in autonomous vehicles or in interactive AI agents that engage directly with humans.

The researchers use state-of-the-art AI tools developed in-house for dynamical systems reconstruction (DSR) to derive generative models of learning from neural and behavioural data. These models are intended to show how the brain processes information and adapts in real time, i.e. while tasks are being performed.

From foundational learning principles to future AI systems

Building on this, the scientists, led by Prof. Dr. Daniel Durstewitz, Head of the Department of Theoretical Neuroscience at the CIMH, aim to identify fundamental learning principles that can be transferred to AI. The researchers’ goal is to enable AI models that can adapt to new situations independently and flexibly without having to be completely retrained each time.

The project team will also examine how these data-derived mechanisms can be translated into spiking neural networks (SNNs), which process information in ways more closely aligned with biological neurons. The goal here is to pave the way for more energy-efficient and biologically plausible forms of artificial intelligence.

Long-term perspectives for clinical application and AI research

“Our work is not only intended to improve AI systems, but also to further our understanding and prediction of dynamical processes in the brain in mental disorders,” says Durstewitz. “In the long term, the methods we develop will also be used in psychiatric contexts, for example to predict individual disease progression or to control adaptive neurofeedback procedures.”

The project’s findings will be published in scientific journals and presented at major conferences in AI and machine learning. In the future, they will also be transferred to industrial collaborations and biomedical applications.

Further links

Original press release

> more

Original publication

> more

Biological intelligence as the basis for new AI systems

5. December 2025/in Ausgewählter Aktuelles-Post für die Startseite /by Elena Reiriz Martinez

Kontakt Aktuelles

Contact

Prof. Dr. Daniel Durstewitz

Department Theoretical Neuroscience
Laboratory Building, 4th Floor, Room 4.08
Central Institute of Mental Health (CIMH)
68159 Mannheim
Germany

+49 621 1703-2361
daniel.durstewitz@zi-mannheim.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}