Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Cologne
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhine-Main Region
      • Bernstein Node Taiwan
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Learning to see is teamwork
Frankfurt am Main, Germany – September 10, 2025

Learning to see is teamwork

Seeing is more than light hitting the retina — it is the result of a finely tuned interplay between networks of neurons. A new study by researchers at the Frankfurt Institute for Advanced Studies (FIAS) and international partners shows how the brain learns to reliably process visual stimuli after the eyes open. With experience, incoming signals become more precise and increasingly aligned with internal circuits — a process that enables stable visual perception. These insights could inform advances in artificial intelligence (AI) and therapeutic approaches.

Learning to see is a complex interplay of neurons—and thus presumably a fundamental principle of the brain. Understanding this provides important foundations for research, therapies, and the development of artificial intelligence. (Image: Sigrid Trägenap, supported by NanaBanana)

Bernstein members involved: Sigrid Trägenap, Matthias Kaschube

How the brain learns to interpret the world visually has long puzzled researchers. Earlier studies suggested that neural responses at eye opening were immature and poorly coordinated. But new findings, led by scientists at the Max Planck Florida Institute for Neuroscience (MPFI) in close collaboration with FIAS, offer a different view: visual experience not only sharpens the input signals, but also aligns them with recurrent neural circuits. As a result, initially variable patterns give rise to a stable and consistent representation of the visual world.

The team in Florida studied this interplay in ferrets — an ideal model, as their eyes remain closed for weeks after birth. This delay allows researchers to observe how visual experience shapes the development of neural circuits with precision. Using a unique combination of modern techniques — simultaneous electrophysiology, calcium imaging, and whole-cell recordings — they captured the activity of individual neurons and entire networks at the same time.

For the first time, this approach enabled researchers to directly link single-cell activity with broader patterns across the brain — offering a multi-layered view of cortical development. Building on these data, researchers from the group of FIAS Senior Fellow Matthias Kaschube developed a computational model to disentangle the contributions of different biological processes. The findings show that clear visual perception only emerges when both the precision of incoming signals and their alignment with internal networks improve over time. This broad methodological framework — made possible through close international collaboration — provides a coherent picture of maturation, from individual neurons to entire networks and across cortical layers.

“Our results show that the brain doesn’t simply fine-tune existing structures when learning to see,” says FIAS doctoral researcher Sigrid Trägenap, who co-developed the model. “It actively adapts its internal networks to the world it perceives.” This adaptability, she adds, is one of the brain’s greatest strengths — and one that artificial intelligence has yet to match.

The researchers believe that this developmental process may reflect a fundamental principle of brain organization — one that extends far beyond the visual system. It could help explain how the brain achieves both precision and flexibility across different sensory modalities and cognitive functions. In addition to advancing basic research, the findings may inspire new approaches in artificial intelligence and inform medical therapies, such as rehabilitation strategies following stroke or other brain injuries.

Further links

Original press release (FIAS)

> more

Original publication

> more

Learning to see is teamwork

15. September 2025/in /by Elena Reiriz Martinez

Kontakt Aktuelles

Contact

Sigrid Trägenap

Scientific contact
Frankfurt Institute for Advanced Studies (FIAS)

+49 69 798 47501
traegenap@fias.uni-frankfurt.de

Anja Störiko

FIAS Press Office
Frankfurt Institute for Advanced Studies (FIAS)

+49 69 798 47507
stoeriko@fias.uni-frankfurt.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}