Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Meet the Scientist
    • Events
    • Calls
    • Media Coverage
    • Press
    • Network Publications
    • Bernstein Bulletin
  • Teaching and Research
    • Teaching and Research
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series 2023
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
    • Mission Statement
  • Career
    • Career
    • Job Pool
    • Join our team
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Satellite Workshops
      • Valentin Braitenberg Award
      • Conference Dinner
    • Registration
    • Abstract Submission
    • Early Career Scientists
      • Postdoc Meeting
      • PhD Symposium
      • Travel grants
    • Exhibition
    • General Information
      • About the Bernstein Conference
      • Important dates & FAQ
      • PR Media Policy
      • Data Policy
      • Code of Conduct
  • DE
  • EN
  • Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Algorithm estimates age and ethnic origin
Bochum – June 15, 2020

Algorithm estimates age and ethnic origin

An algorithm developed by neuroinformatics engineers in Bochum estimates age and ethnic origin as exactly as humans do. The researchers are not yet sure which features it interprets.

Teilprofil einer Frau/ Profile of a woman

Computers can interpret the signs of the times more accurately than humans. © RUB, Marquard

/RUB/ Wrinkles, furrows, spots: a person’s aging process is accompanied by tell-tale signs on their face. Researchers from the Institute for Neural Computation at Ruhr-Universität Bochum (RUB) have developed an algorithm that interprets these features very reliably. It makes it possible to estimate the age and ethnicity of people so accurately that it catapulted RUB researchers to the top of the league table worldwide for a while. The RUB team published its report in the journal “Machine Learning” from May 2020.

The system has learned to estimate

“We’re not quite sure what features our algorithm is looking for,” says Professor Laurenz Wiskott from the Institute for Neural Computation. This is because the system has learned to assess faces. The successful algorithm developed by the Bochum-based researchers is a hierarchical neural network with eleven levels. As input data, the researchers fed it with several thousand photos of faces of different ages. The age was known in each case. “Traditionally, the images are the input data and the correct age is the target fed into the system, which then tries to optimise the intermediate steps to assess the required age,” explains lead author Alberto Escalante.

However, the researchers from Bochum chose a different approach. They input the many photos of faces sorted by age. The system then ignores the features that vary from one picture to the next and takes solely those features into consideration that change slowly. “Think of it as a film compiled of thousands of photos of faces,” explains Laurenz Wiskott. “The system fades out all features that keep changing from one face to the next, such as eye colour, the size of the mouth, the length of the nose. Rather, it focuses on features that slowly change across all faces.” For example, the number of wrinkles slowly but steadily increases in all faces. When estimating the age of the people pictured in the photos, the algorithm is only just under three and a half years off on average. This means that it outperforms even humans, who are real experts in face recognition and interpretation.

The system also recognises ethnic origins

The slowness principle also enabled it to reliably identify ethnic origin. The images were presented to the system sorted not only by age, but also by ethnicity. Accordingly, the features characteristic of an ethnic group didn’t change quickly from image to image; rather, they changed slowly, albeit by leaps and bounds. The algorithm estimated the correct ethnic origin of the people in the photos with a probability of over 99 percent, even though the average brightness of the images was standardised and, consequently, skin colour wasn’t a significant marker for recognition.

>> original press release

Original publication

Alberto N. Escalante, Laurenz Wiskott: Improved graph-based SFA: information preservation complements the slowness principle, in: Machine Learning, 2020, DOI: 10.1007/s10994-019-05860-9

Funding

Alberto Escalante was funded through a joint grant by the German Academic Exchange Service and the National Council of Science and Technology of Mexico.

Algorithm estimates age and ethnic origin

1. December 2020/in /by Alexandra Stein

Kontakt Aktuelles

Contact

Prof. Dr. Laurenz Wiskott


Institut für Neuroinformatik

Ruhr-Universität Bochum


+49 234 32-27997

laurenz.wiskott@rub.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

Mastodon
© 2023 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage vendors Read more about these purposes
Settings
{title} {title} {title}