Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Meet the Scientist
    • Events
    • Calls
    • Media Coverage
    • Press
    • Network Publications
    • Bernstein Bulletin
  • Teaching and Research
    • Teaching and Research
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series 2023
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
    • Mission Statement
  • Career
    • Career
    • Job Pool
    • Join our team
  • Bernstein Conference
    • Bernstein Conference
    • Call for Satellite Workshops
    • General Information
      • Tentative Schedule
      • Past Conferences
    • FAQ
  • EN
  • DE
  • Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Insights into hippocampal network function
Freiburg – December 16, 2021

Insights into hippocampal network function

A new study proposes a full-scale model of the entorhinal cortex–dentate gyrus–CA3 network, providing a conceptual overview of the computational properties of this brain network, to show that it is an efficient pattern separator.

Hippocampus according to the late Michael Frotscher, founding member of the Bernstein Center Freiburg

Bernstein member involved: Ad Aersten

/BCF/ There is hardly an area in the mammalian brain on which so many experimental facts are known as the hippocampus. Both the anatomy of its network circuitry and the physiology of its constituent neurons and synapses have been characterized in remarkable detail. For many years, the hippocampus has also been the prime target area when studying synaptic plasticity and its role in learning and memory. Yet, despite this wealth of experimental data, there is still no clear understanding about how the specific properties of network circuitry, neurons and synapses contribute to the purported function of the hippocampal network.

Writing in Nature Computational Science, Peter Jonas, founding member of the Bernstein Center Freiburg (BCF) and his colleagues at the Institute of Science and Technology (IST) in Vienna (Austria) propose a biologically realistic, full-scale network model to show that these various specific properties and their intricate interactions optimize higher-order computations performed in this biological network. The paper is commented upon in a “News & Views” in the same journal by Ad Aertsen, founding director of the BCF.

In their study, the authors focus on pattern separation, but pattern completion is also considered. Specifically, they address the following question: whether and to what extent the three-layer feedforward network provides the anatomical, physiological and biophysical properties to support the computational process of pattern separation. To this end, they developed, implemented and simulated a network model of this brain network, including most of the known cell types in the circuitry, using realistic values of network connectivity, cell properties, synaptic dynamics and other biophysical properties — many of them stemming from their own experimental work. Importantly, the authors chose to make a full-scale model of the network, thereby avoiding the complex issues involved with scaling connectivity, neuronal and synaptic properties with network size.

Taken together, the paper provides a comprehensive and innovative conceptual overview of the computational properties of an important brain network, on which the literature up till now has been riddled with many isolated experimental facts and numbers, without a clear view regarding the functional role of these various facts and numbers.

Original Publications

S. Jose Guzman, Alois Schlögl, Claudia Espinoza, Xiaomin Zhang, Benjamin A. Suter, and Peter Jonas (2021) How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network. Nature Computational Science. https://dx.doi.org/10.1038/s43588-021-00157-1.
Ad Aertsen (2021) News & Views: Insights into hippocampal network function. Nature Computational Science. https://dx.doi.org/10.1038/s43588-021-00159-z.

Further links

Bernstein Center Freiburg

> more

Insights into hippocampal network function

25. January 2022/in /by Claudia Duppé

Kontakt Aktuelles

Contact

Prof. em. Dr. Ad Aertsen

Bernstein Center Freiburg
University Freiburg

aertsen@biologie.uni-freiburg.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

Mastodon
© 2023 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage vendors Read more about these purposes
Settings
{title} {title} {title}