Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Rhine-Main Region
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Registration
    • Program
      • Satellite Workshops
      • Conference Dinner
    • Abstract Submission
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Code of Conduct
      • Data Policy
    • Past Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Algorithm detective determines suitable neuro-model
Bonn – October 29, 2020

Algorithm detective determines suitable neuro-model

In research, collecting data can be difficult, but fitting the data into a model that explains the observations is a challenge on another level. In neuroscience, many experiments measure the activity of neurons. However, to understand what exactly happens in a neuronal network, the data needs to be explained by a model. So, which model fits which data? A novel method developed by Pedro J. Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Jakob Macke and colleagues automates this process.

Grafik SNPE/ Graphic SNPE

The algorithm (SNPE) takes three inputs: a model (i.e. computer code to simulate data from parameters), prior knowledge or constraints on parameters, and empirical data. SNPE runs simulations for a range of parameter values, and trains an artificial neural network to map any simulation result onto a range of possible parameters. After training on simulated data with known model parameters, SNPE provides the full space of parameters consistent with the empirical data and prior knowledge. By P. Goncalves, J. Lueckmann, M. Deistler and J. Macke

BN/ caesar, Scherrer et al./
The brain consists of a vast network formed by nerve cells. In order to understand processes in single neurons as well as interactions in networks of neurons, neural activity can be measured and a computational model can be used to understand the plethora of neuronal mechanisms. However, the identification of a suitable model, i.e. a model that matches the measured data, has so far often been very difficult, especially for complex, mechanistic models with many parameters.

Up until now, the possibilities of finding suitable models were limited: Either models were modified in painstaking work, until they could explain the measured data, or attempts were made to heuristically match models by using the “brute force” principle – i.e. the testing of all possible models. These approaches are either not systematic and prone to subjective criteria, or they are not efficient and are hence limited by the complexity of the model.

Pedro J. Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Jakob Macke and colleagues found a solution to this problem. They developed an algorithm that automatically determines suitable models based on the data observed in the experiment. Key to this approach is “Bayesian inference”: using the observed data and model simulations, the algorithm algorithmically identifies all suitable models that fit the measured data.

By using the novel algorithm, the scientific work is accelerated enormously. Remarkably, the new approach does not require any knowledge of the internal workings of the model and hence can be applied to models of various kinds and complexities. This makes it possible to use the algorithm in other areas of biomedical research as well.

Original publication

Gonçalves, Pedro J, Lueckmann, J., Deistler, M., Nonnenmacher,M., Öcal, K.,  Bassetto, G., Chintaluri, C., Podlaski, W.F., Haddad, S.A., Vogels,T.P., Greenberg, D.S. and Macke. J.H.  “Training deep neural density estimators to identify mechanistic models of neural dynamics”. eLife. Oct. 27. 2020. Doi: 10.7554/eLife.56261

Further links

Illuminating the Dark Parameter Space of Neuroscience Modeling

> more

Profile Jakob Macke

> more

Algorithm detective determines suitable neuro-model

25. November 2020/in /by Alexandra Stein

Kontakt Aktuelles

Contact

Pedro Gonçalves

Max Planck Research Group Neural Systems Analysis
Center of Advanced European Studies and Research (caesar)
Bonn, Germany

pedro.goncalves@caesar.de

Jakob Macke

Machine Learning in Science
Excellence Cluster Machine Learning
University of Tübingen

jakob.macke@uni-tuebingen.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}