Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Meet the Scientist
    • Events
    • Calls
    • Media Coverage
    • Press
    • Network Publications
    • Bernstein Bulletin
  • Teaching and Research
    • Teaching and Research
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series 2023
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
    • Mission Statement
  • Career
    • Career
    • Job Pool
    • Join our team
  • Bernstein Conference
    • Bernstein Conference
    • Call for Satellite Workshops
    • General Information
      • Tentative Schedule
      • Past Conferences
    • FAQ
  • EN
  • DE
  • Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Neurobiology: How mice see the world
Munich, Tübingen – June 30, 2021

Neurobiology: How mice see the world

Researchers based in Munich and Tübingen have developed an open-source camera system that images natural habitats as they appear to rodents.

A camera specifically designed to cover the spectral regions in the green and ultraviolet | © Y. Qiu, Euler Group

Bernstein member involved: Laura Busse

/UniTue/LMU/ The senses of an animal are shaped by the ecological niche it inhabits. This poses challenges but also opportunities for neuroscientific studies of an animal’s sensory systems. Mice, today a key mammalian model in vision research, occupy a different ecological niche compared to humans, and therefore have different behavioral needs. The visual system of mice has – unsurprisingly – adapted in a different way: For example, mice can see wavelengths of light invisible to our eye, in particular in their upper visual field. However, these adaptations are still rarely considered when studying the mouse’s visual system.

Within the DFG-funded collaborative research center (CRC) “Robust Vision”, researchers from the Institute for Ophthalmic Research at the Tübingen University and the Faculty of Biology at LMU Munich set out to fill this gap of knowledge. To advance our understanding of mouse vision, Qiu and colleagues have built a novel open-source camera to “see” the world from the mouse’s perspective. In their study, recently published in Current Biology, they recorded movies of mouse habitats with their camera and quantitatively characterized the acquired footage. They found that the statistics of the mouse’s visual environment are reflected in neural specializations already at the level of the retina.

The visual systems of animals evolved to efficiently process the stream of images coming from their natural environments and to support them in attending to their behavioral needs. Here, a prominent example for such adaptation is eye placement: Predators typically feature frontally-placed eyes, which enables depth vision in a large portion of their visual field and, hence, supports hunting behavior. In contrast, prey often have laterally-placed eyes, which maximizes their field-of-view  – leading in some species to almost 360° vision – and ensures that they detect a predator no matter from which side it approaches.

In past decades, mice have become a prominent animal model for studying vision. They possess three types of photoreceptors: In addition to rod photoreceptors and medium wavelength-sensitive (M) cone photoreceptors – both being maximally sensitive around 510 nm (green) – they also feature a short wavelength-sensitive (S) cone photoreceptor peaking at 360 nm light, which is in the UV band invisible to us. Moreover, other than in humans, the two cone photoreceptor types are distributed unequally across the mouse retina, resulting in higher sensitivity for UV in the upper visual field, and a higher sensitivity for green in the lower visual field.
farbensehen_Maus

Black drone (encircled) at twilight in the camera’s two chromatic channels – as it is presumably seen by mice.

With these features of mouse vision in mind, the teams of Prof. Thomas Euler (U Tübingen) and Prof. Laura Busse (LMU) developed an open-source camera system for recording video footage in the spectral bands that mice see – UV and green – with a field-of-view of nearly 180°. Such video recordings were performed near mouse habitats, at different times of a day, for different seasons and scenes. This footage is publicly available for research use (https://doi.org/10.5281/zenodo.4812404).

Next, the authors analyzed the contrast distribution of the two chromatic channels, for different parts of the visual fields. Analysis of the recorded footage revealed that chromatic signals were richer in the upper compared to the lower visual field, a characteristic pattern in the visual environment of mice. To understand whether this characteristic pattern in the visual scene was sufficient to drive the emergence of retinal specializations for processing color – that is the aforementioned horizontal division of the visual field – the authors used a computational neural network model. Indeed, when this artificial network was trained with images from the upper visual field, the network developed “color vision”, similar as found in the mouse retina.

So why do mice have this ability to see UV light? This question is intriguing, in particular since UV wavelengths can damage the eye on the long run, which is why most UV is filtered out by the optics in our eyes before it reaches the retina. To test if UV vision might help mice detecting predators in the sky, the authors collected footage also at dusk and dawn, and simulated an approaching bird of prey by flying a black remoted controlled drone. They found that the drone was much more easily detectable in the UV than in the green camera channel, suggesting that UV vision may reduce the risk for mice being eaten when they roam for food during twilight.

Taken together, this study supports the view that the statistics of the natural environment shaped the visual system during evolution. Furthermore, the findings stress the necessity of vision research in the context of the environment the animals evolved in.

Text: PM Uni Tübingen.

Youtube Clip

Imaging the environment as it would appear to a mouse. (The UV channel is coloured in blue.) Source: Yongrong Qiu, Euler Group. >> to the youtube clip

Publication

Yongrong Qiu et al: Natural environment statistics in the upper and lower visual field are reflected in mouse retinal specializations. Current Biology 2021

Further links

Website Vision Circuits

> more

Euler Lab

> more

Neurobiology: How mice see the world

6. July 2021/in /by Claudia Duppé

Kontakt Aktuelles

Contact

Prof. Dr. Laura Busse

Division of Neurobiology
Department Biology II
LMU Munich

+49 89 218074305
busse@biologie.uni-muenchen.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

Mastodon
© 2023 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage vendors Read more about these purposes
Settings
{title} {title} {title}