Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Meet the Scientist
    • Events
    • Calls
    • Media Coverage
    • Press
    • Network Publications
    • Bernstein Bulletin
  • Teaching and Research
    • Teaching and Research
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
    • Mission Statement
  • Career
    • Career
    • Job Pool
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Satellite Workshops
      • Main Conference
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium 2022
      • Postdoc Meeting
      • Travel Grants
    • Registration
    • General Information
      • Hybrid event
      • Instructions for poster presenters
      • Code of Conduct
      • Data Policy
      • PR Media Policy
      • Past Conferences
    • Exhibition
    • Important dates & FAQ
  • DE
  • EN
  • Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Machine learning improves biological image analysis
Tübingen – September 9, 2021

Machine learning improves biological image analysis

International team of researchers develops algorithm that accelerates super-resolution microscopy

COS-7 cell imaged with SMLM; Image: Reconstruction by Artur Speiser et. al., data provided by Wesley Legant et. al.

Bernstein member involved: Jakob Macke

/Tübingen University/ Scientists use super-resolution microscopy to study previously undiscovered cellular worlds, revealing nanometer-scale details inside cells. This method revolutionized light microscopy and earned its inventors the 2014 Nobel Prize in Chemistry. In an international collaboration, AI researchers from Tübingen have now developed an algorithm that significantly accelerates this technology.

Single-molecule localization microscopy (SMLM) is a type of super-resolution microscopy. It involves labelling proteins of interest with fluorescent molecules and using light to activate only a few molecules at a time. Using this trick, multiple images of the same sample are acquired. To create a meaningful picture, a computer program unscrambles the data and compiles the complete image. While the technique can be used to locate molecules with high precision, it has one major drawback – it requires scientists to acquire a large number of images, which makes the process very time-consuming.

In an international collaboration, the team of Jakob Macke, Professor for Machine Learning in Science at the University of Tübingen, has developed a new algorithm that overcomes this limitation of SMLM. The joint work with the Ries Group at the European Molecular Biology Laboratory (EMBL) Heidelberg and Dr. Srinivas Turaga’s team at Janelia Research Campus (Virginia, USA) was published in Nature Methods.

Deep learning enables highly accurate single-molecule localisation

The DECODE (DEep COntext DEpendent) algorithm is based on deep learning: It uses a neural network that learns from training data. Instead of using real images, however, the network in this case is trained with synthetic data generated by a numerical simulation. By incorporating information about the microscopic setup and the imaging physics, the researchers achieved simulations that closely matched real-world acquisitions. “The neural network that we trained using simulated data can thus also detect and localize fluorophores in real images”, explains Artur Speiser, who, together with Lucas-Raphael Müller, was the lead author of the paper.

One of the benefits of DECODE is that it accurately detects and localizes fluorophores at higher densities than were previously possible. This means that fewer images are needed per sample. As a result, imaging speeds can be increased up to tenfold with minimal loss of resolution. In addition, DECODE can quantify uncertainties – so the network itself can detect when it is unsure of its localization.

Interdisciplinarity expands the perspectives of research

“This work is indicative of the approach of our Cluster of Excellence ‘Machine Learning: New Perspectives for Science’”, Macke says, whose chair is part of the Tübingen cluster. “We originally developed the ideas underlying the machine learning approach in a very different context, but through collaborating with experts in computational microscopy we were able to turn them into powerful methods for analyzing SMLM data.”

The team has also built a software package which implements the DECODE algorithm. “The software is simple to install and free to use, so we hope it will be useful for many scientists in the future”, adds Dr. Jonas Ries from EMBL.

>> original press release

Original publication

Artur Speiser, Lucas-Raphael Müller, Philipp Hoess, Ulf Matti, Christopher J. Obara, Wesley R. Legant, Anna Kreshuk, Jakob H. Macke, Jonas Ries & Srinivas C. Turaga: Deep learning enables fast and dense single-molecule localization with high accuracy. Nature Methods. https://doi.org/10.1038/s41592-021-01236-x (2021).

Machine learning improves biological image analysis

14. September 2021/in /by Alexandra Stein

Kontakt Aktuelles

Contact

Prof. Dr. Jakob Macke

University of Tübingen
Cluster of Excellence „Machine Learning: New Perspectives for Science“


Dr. Karl Guido Rijkhoek

Director Public Relations Department
University of Tübingen


Antje Karbe

Press Officer

+49 7071 29-76789
antje.karbe@uni-tuebingen.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

© 2022 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top
Cookie-Zustimmung verwalten
close
We use cookies to optimize our website and our service.
Functional
Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage third parties Manage vendors Read more about these purposes
Settings
{title} {title} {title}