Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Meet the Scientist
    • Events
    • Calls
    • Media Coverage
    • Press
    • Network Publications
    • Bernstein Bulletin
  • Teaching and Research
    • Teaching and Research
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
    • Mission Statement
  • Career
    • Career
    • Job Pool
    • Career support
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Abstracts
      • Valentin Braitenberg Award
      • Conference Dinner
    • Registration
    • Early Career Scientists
      • Postdoc Meeting
      • PhD Symposium
      • Travel grants
    • General Information
      • About the Bernstein Conference
      • Important dates & FAQ
      • Directions
      • Press
      • PR Media Policy
      • Data Policy
      • Code of Conduct
    • Bernstein Conference 2024
  • DE
  • EN
  • Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / AI helps understand learning processes
Bochum – May 9, 2023

AI helps understand learning processes

How does the brain learn spatial information? Neural computation researchers are using artificial intelligence to explore this question.

Bernstein members involved: Sen Cheng

Researchers at the Neural Computation Institute of Ruhr University Bochum, Germany, have constructed a computer model that learns spatial information in a pattern similar to that of rodents. In the process, individual sequences of nerve cell activities in the hippocampus are played back repeatedly according to specific priorities. If an artificial intelligence follows the same pattern, it learns spatial information more quickly than if the sequences were repeated at random. Nicolas Diekmann and Professor Sen Cheng published their findings in the journal eLife from 14 March 2023.

The brain revisits routes while we sleep

The hippocampus brain region is of great importance in memory formation. This has been illustrated by famous cases such as that of the patient H.M., who was unable to form new memories after large parts of his a hippocampus had been removed. Studies on rodents have demonstrated the role of the hippocampus in spatial learning and navigation. An important discovery in this context was cells that fire at specific locations, known as place cells. “They play a role in a fascinating phenomenon known as replay,” explains Nicolas Diekmann: “When an animal moves around, certain place cells fire one after the other along the animal’s route. Later, at rest or during sleep, the same place cells can be reactivated either in the same order as they were experienced or in reverse order.”

The sequences observed during repetition don’t just reflect earlier behaviour. Sequences can also be reassembled, they can adapt to structural changes in the environment or represent places not yet visited but seen.

“We were interested in how the hippocampus produces such a variety of replay types efficiently and what purpose they serve,” outlines Nicolas Diekmann. The researchers therefore built a computer model in which an artificial intelligence learns spatial information. Ultimately, they study how quickly the AI agent finds an exit from a specific spatial situation. The better it knows it, the faster it is.

Playback follows certain rules

The AI agent too learns by repeating neuronal sequences. However, they are not played back randomly, but prioritised according to certain rules. “Sequences are played back stochastically according to their prioritisation,” points out Diekmann. Familiar sequences are prioritised. Positions associated with a reward are also played back more frequently. “Our model is biologically plausible, generates a manageable computational overhead and learns faster than agents where sequences are replayed at random,” sums up Nicolas Diekmann. “This gives us a little more detail on how the brain learns.”

Further links

Original press release

> more

Scientific publication

> more

AI helps understand learning processes

10. May 2023/in /by Alexander Lammers
Share this entry
  • Share on Twitter

Kontakt Aktuelles

Contact

Nicolas Diekmann

Neural Computation Institute
Ruhr University Bochum
Germany

+49 234 32 27969
nicolas.diekmann@ini.ruhr-uni-bochum.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

Mastodon
© 2023 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}