Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Rhein-Main Region
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Ethos des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Publikationen des Netzwerks
    • Bernstein Bulletin
    • Presse
  • Forschung und Lehre
    • Forschung und Lehre
    • Meet the Scientist
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
      • Podcasts
  • Karriere
    • Karriere
    • Stellenangebote
    • Praktika und Abschlussarbeiten
  • Bernstein Conference
    • Bernstein Conference
    • Registration
    • Program
      • Satellite Workshops
      • Conference Dinner
    • Abstract Submission
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel grants
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Code of Conduct
      • Data Policy
    • Past Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / KI hilft Lernprozesse verstehen
Bochum – 9. Mai 2023

KI hilft Lernprozesse verstehen

Wie lernt das Gehirn räumliche Informationen? Dieser Frage sind Neuroinformatiker:innen mit einer Künstlichen Intelligenz auf der Spur.

Beteiligte Bernstein-Mitglieder: Sen Cheng

Forschende des Instituts für Neuroinformatik der Ruhr-Universität Bochum haben ein Computermodell konstruiert, das örtliche Informationen nach einem ähnlichen Muster lernt wie Nagetiere. Dabei werden einzelne Sequenzen von Nervenzellaktivitäten im Hippocampus nach bestimmten Prioritäten wiederholt abgespielt. Macht das die Künstliche Intelligenz genauso, lernt sie Rauminformationen schneller als bei zufälliger Wiederholung der Sequenzen. Nicolas Diekmann und Prof. Dr. Sen Cheng berichten in der in der Zeitschrift eLife vom 14. März 2023.

Im Schlaf lässt das Gehirn Strecken Revue passieren

Die Gehirnregion des Hippocampus spielt für das Gedächtnis eine wichtige Rolle. Berühmte Fälle wie der des Patienten H.M., der nach der Entfernung großer Teile seines Hippocampus keine neuen Erinnerungen mehr bilden konnte, unterstreichen das. Studien an Nagetieren haben die Rolle des Hippocampus beim räumlichen Lernen und bei der Navigation belegt. Eine wichtige Entdeckung waren dabei Zellen, die an bestimmten Orten feuern, die sogenannten Ortszellen. „Sie sind an einem faszinierenden Phänomen beteiligt, das als Replay bekannt ist“, erklärt Nicolas Diekmann: „Wenn sich ein Tier fortbewegt, feuern bestimmte Ortszellen nacheinander entlang der Route des Tieres. Später in Ruhe oder im Schlaf können dieselben Ortszellen in der gleichen Reihenfolge wie erlebt oder in umgekehrter Reihenfolge reaktiviert werden.“

Die bei der Wiederholung beobachteten Sequenzen spiegeln dabei nicht nur früheres Verhalten wider. Es können auch Sequenzen neu zusammengestellt werden, sie können sich an strukturelle Veränderungen in der Umgebung anpassen oder noch nicht besuchte, aber gesehene Orte repräsentieren.

„Wir wollten wissen, wie der Hippocampus eine solche Vielfalt an Wiedergabearten effizient produziert und welchem Zweck sie dienen“, erklärt Nicolas Diekmann. Die Forschenden bauten daher ein Computermodell auf, in dem eine Künstliche Intelligenz Rauminformationen lernt. Es geht letztlich darum, wie schnell der KI-Agent einen Ausgang aus einer bestimmten räumlichen Situation findet. Je besser er sich darin auskennt, desto schneller ist er.

Abspielen nach bestimmten Regeln

Auch der KI-Agent lernt durch Wiederholen von neuronalen Sequenzen. Sie werden jedoch nicht zufällig abgespielt, sondern nach gewissen Regeln priorisiert. „Sequenzen werden stochastisch entsprechend ihrer Priorisierung abgespielt“, erklärt Diekmann. Bekannte Sequenzen werden bevorzugt abgespielt. Belohnte Positionen nehmen ebenfalls häufiger an Replay teil. „Unser Modell ist biologisch plausibel, erzeugt einen überschaubaren Rechenaufwand und lernt schneller als Agenten, bei denen die Sequenzen zufällig abgespielt werden“, fasst Nicolas Diekmann zusammen. „Das zeigt uns ein wenig genauer, wie das Gehirn lernt.“

Weiterführende Verlinkungen

Originale Pressemitteilung

> mehr

Wissenschaftliche Publikation

> mehr

KI hilft Lernprozesse verstehen

10. Mai 2023/in /von Alexander Lammers

Kontakt Aktuelles

Kontakt

Nicolas Diekmann

Institut für Neuroinformatik
Ruhr-Universität Bochum

+49 234 32 27969
nicolas.diekmann@ini.ruhr-uni-bochum.de

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns auf

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen Nach oben scrollen Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten Sie {vendor_count} Lieferanten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}