Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Rhine-Main Region
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Program
    • Abstract Submission
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
    • Past Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Distributed workload in the fly brain
Martinsried – October 2, 2023

Distributed workload in the fly brain

Recognizing motion requires an enormous amount of computing power from the brain. A new study from Alexander Borst's department at the Max Planck Institute for Biological Intelligence shows how the fly brain masters this task: By performing a neuronal computation on three network levels, it distributes the workload over several steps. This is the first time that researchers have deciphered a neuronal network in which one cell type performs the same computation at all network levels. This approach helps fruit flies to reliably recognize different motion patterns – the prerequisite for staying on track.

During motion vision certain neurons are activated by motion in one direction and inhibited by motion in the opposite direction. Researchers now show that the underlying computation is performed in the fly brain on all three network levels. Illustration: MPI for Biological Intelligence / Julia Kuhl

Bernstein members involved: Etienne Serbe-Kamp

Fruit flies are masters at detecting motion, and they have to be: even the slightest gust of wind can throw such a small fly off its flight path. To stay on course, flies orient themselves to the optical flow. These are motion patterns that appear on a fly’s retina as it moves. Depending on its direction of motion, the patterns differ and tell the fly whether it is moving straight ahead or has turned around a certain axis.

Alexander Borst’s department studies motion vision in the fly brain at the level of small circuits. Here, ‘motion opponency’ plays a crucial role. Certain neurons are activated by motion in one direction and inhibited by motion in the opposite direction. In 2015, the researchers made a scientific breakthrough when they discovered so-called LPi cells as the cellular basis for this phenomenon.

Since then, the neuronal network of motion vision can be divided into three levels. As the first direction-selective cells, T4/T5 cells (first level) analyze a small image section. They forward their information to LPi cells (second level) and output cells (third level). LPi cells inhibit output cells that respond to opposite directions and are thus responsible for their motion opponency. This prevents output cells from being activated by non-specific signals. Output cells collect the signals from many T4/T5 cells and thus receive information about a larger image area. If their computations indicate that the fly is off course, a course correction is initiated.

By chance, the researchers now gained even more insights into this network. When Georg Ammer, first author of the study, tested new electrophysiology equipment, he chose LPi cells as ‘test objects’ and was suddenly confronted with completely unexpected measurement results. To get to the bottom of this observation, the neurobiologist and his colleagues combined various experimental methods, including voltage-sensitive dyes and the analysis of connectome data sets. They found that LPi cells exert their inhibitory function at all network levels. They inhibit not only output cells with opposite preferential directions, but also T4/T5 cells and other LPi cells. “We were very surprised by this result,” Georg Ammer reports. “Up to that point, we didn’t know any network in which the same neuronal computation is performed at each level and even by the same cell type.”

To the scientists, LPi cells seemed rather inconspicuous at first. Within the network, they contribute only about 5-10% of all synapses. However, electrophysiology experiments showed that these inhibitory synapses are very effective: They are about ten- to 20-fold stronger than activating synapses, so despite being outnumbered, they can cause similar voltage changes.

But why is the same computation done in three different places and not just once at the end? The researchers were able to explain this approach, which at first sounds rather cumbersome, with computer models. As the network filters out local noise already at the first two levels, it protects output cells from being overloaded with unimportant information and keeps them responsive to relevant information. This allows output cells to distinguish motion patterns with high sensitivity, even under difficult conditions.

Inhibition between two oppositely tuned channels, as in motion opponency, is a universal principle of neuronal networks. “It could well be that in other species and different brain regions the same computation is distributed across multiple levels and that this principle has great functional importance there as well,” Alexander Borst explains. Dividing difficult tasks into smaller bites is thus not only a helpful strategy in our everyday lives – neurons also benefit from this approach.

Further links

Original press release

> more

Scientific publication

> more

Distributed workload in the fly brain

9. October 2023/in /by Alexander Lammers

Kontakt Aktuelles

Contact

Dr. Georg Ammer

Max Planck Institute for Biological Intelligence

georg.ammer@bi.mpg.de

Prof. Dr. Alexander Borst

Max Planck Institute for Biological Intelligence

alexander.borst@bi.mpg.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}