Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Rhine-Main Region
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Program
    • Abstract Submission
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
    • Past Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / How does artificial intelligence (AI) view the world?
Freiburg im Breisgau – January 31, 2024

How does artificial intelligence (AI) view the world?

Joschka Boedecker, Ilka Diester and Monika Schoenauer about internal world models in people, animals and AI

Ilka Diester, Joschka Bödecker, Monika Schönauer, Photo: Jürgen Gocke

Bernstein members involved: Ilka Diester

We know from previous research on internal world models that people are very good at navigating the unknown. When a person plans a trip to a foreign city, they don’t start from scratch. From previous city trips, they know the difference between trams and underground trains and that sights are often located in the city centre.  How would an AI plan a city trip? AI does not gain knowledge, even about cities, from its own experiences. Does it nevertheless have an idea of what is meant by the term “city”? Does AI develop abstract models of reality? Prof. Dr Joschka Boedecker (Computer Science), Prof. Dr Ilka Diester(Biology) and Junior Prof. Dr Monika Schoenauer (Neuropsychology) approach these questions with the help of the concept of internal world models.

World models in people: From experiences to predictions

People make predictions about what to expect in certain contexts based on their experiences. “Over time, we develop an internal world model that represents a possibly distorted mirror of the physical world around us,” says Ilka Diester. This world model not only relates to our spatial imagination, such as in a foreign city, adds Monika Schoenauer, but also to behaviour in certain social contexts. Among other things, such world models help us to cope with new situations. “A new situation is not threatening for us because we have an expectation of what will happen,” says Schoenauer. Cognitive psychologists and neuroscientists can question participants to discover their world models. Using neuroimaging approaches, they can also recognize patterns in brain activity that point towards these internal models.

World models of artificial intelligence: Less flexible than humans

The principle according to which AI is programmed is based on the structure of the human brain. Several levels of computing nodes are linked together, similar to neurons that form a network via their synapses. “Technical systems learn to behave optimally in certain environments and with certain tasks. What they have learnt is then reflected in how the various links between nodes are weighted,” explains Joschka Boedecker. The perception that AI has of the world is therefore fed solely by the context-specific data that it has available. Accordingly, AI is less flexible than humans, who often interact with the world spontaneously and playfully, without any specific optimisation guidelines. The importance of a comprehensive data basis is therefore evident when training robots, for example. “Robots that learn to control their joints and motors by trying them out in the ‘real world’ do this much better than those that we only train using simulations,” says Boedecker.

The fact that AI’s knowledge of the world is only fed by pre-filtered data creates a problem: AI adopts distortions in data sets one-to-one into its world model. “I can rationally explain to a human why, for example, most high earners are male – and that this is not due to women’s lower abilities.  AI, on the other hand, learns these statistics and then assesses it as fundamentally unlikely that a woman could take on a very well-paid management position,” says Monika Schoenauer. The solution to this problem is a current research topic.

Learning from one another; Holistic research on internal world models

Despite this shortcoming in terms of their flexibility, AI is an important piece of the puzzle when it comes to researching world models. It allows scientists to specifically adjust individual parameters and examine how AI changes as a result. “In order to understand all facets of internal world models, we work together across disciplinary boundaries,” says Ilka Diester. “While humans can verbalise their thoughts, we instead measure neuron activity in animals very precisely and recognise patterns in them depending on the decision. This allows us to physiologically determine the implementation of world models. AI, in turn, helps us to analyse data and also serves as a model system that we can design from scratch and adapt flexibly to test predictions.”

Joschka Boedecker, Ilka Diester and Monika Schoenauer are available for media interviews.

Further links

Original press release with video interviews

> more

How does artificial intelligence (AI) view the world?

1. February 2024/in /by Alexander Lammers

Kontakt Aktuelles

Contact

University and Science Communications

University of Freiburg

+49 761/203-4302
kommunikation@zv.uni-freiburg.de

Prof. Dr. Joschka Bödecker

Head of Neurorobotics Lab
University of Freiburg

+49 761 203-8040
jboedeck@informatik.uni-freiburg.de

Prof. Dr. Ilka Diester

Head of Optophysiology Lab
University of Freiburg

+49 761 203-8440
ilka.diester@biologie.uni-freiburg.de

Prof. Dr. Monika Schönauer

Junior Professor of Neuropsychology
University of Freiburg

+49 761 203-2475
monika.schoenauer@psychologie.uni-freiburg.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}