Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Köln
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhein-Main Region
      • Bernstein Node Taiwan
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Ethos des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Publikationen des Netzwerks
    • Bernstein Bulletin
    • Presse
  • Forschung und Lehre
    • Forschung und Lehre
    • Meet the Scientist
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
      • Podcasts
  • Karriere
    • Karriere
    • Stellenangebote
    • Praktika und Abschlussarbeiten
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Das Sehsystem durch Augen der KI
Göttingen – 10. April 2025

Das Sehsystem durch Augen der KI

Mit künstlicher Intelligenz das Sehsystem im Gehirn verstehen: Ein internationales Forschungsteam (MICrONS) hat mit Beteiligung der Universität Göttingen neue KI-Modelle entwickelt, um die komplexe Verarbeitung von visuellen Reizen im Gehirn zu entschlüsseln. Die Forschenden untersuchten, wie Form, Verschaltungsmuster und Aktivität von Nervenzellen im Mäusegehirn zusammenhängen. Die zentralen Ergebnisse des Projektes wurden in einer Reihe von Artikeln in den Fachzeitschriften Nature und Nature Communications veröffentlicht.

Das Bild zeigt mehr als 1.000 der 120.000 Gehirnzellen (Neuronen + Glia), die im Rahmen des MICRONS-Projekts rekonstruiert wurden. Jedes rekonstruierte Neuron hat eine andere zufällige Farbe. Es handelt sich um eine symbolische Darstellung, aber nicht um die tatsächliche Wiedergabe des Datensatzes – es gibt weitaus mehr aufgezeichnete Neuronen als die eingezeichneten.

Beteiligte Bernstein Mitglieder: Alexander Ecker, Fabian Sinz, Philipp Berens

Die Studie „Foundation Model of Neural Activity Predicts Response to New Stimulus Types and Anatomy“ stellt ein neues KI-Modell vor, das aus großen Datenmengen gelernt hat und sich flexibel auf neue Aufgaben übertragen lässt. Das Team analysierte dazu über 135.000 Nervenzellen im Sehsystem von Mäusen und entwickelte ein Modell, das zuverlässig neuronale Reaktionen auf neue Reize voraussagt – sogar auf solche, die es während des Trainings nie gesehen hat. „Unser Modell kann beispielsweise Antworten auf kohärente Bewegungsmuster, Rauschbilder und statische natürliche Bilder vorhersagen, ohne jemals mit diesen Reizarten konfrontiert worden zu sein“, erklärt Prof. Dr. Fabian Sinz vom Institut für Informatik und dem Campus-Institut Data Science der Universität Göttingen, der das Modell mitentwickelt hat. Diese Arten von Reizen sind entscheidend für das Verständnis neuronaler Informationsverarbeitung.

In einer weiteren Studie untersuchte das Team die Form und Struktur von bestimmten Nervenzellen im Sehbereich des Gehirns, dem sogenannten visuellen Kortex. „An unsupervised map of excitatory neurons’ dendritic morphology in the mouse visual cortex“ zeigt, dass die sogenannten Pyramidenzellen – Zellen mit pyramidenartiger Form, die wichtige Signale an andere Zellen im visuellen Kortex weitergeben – vielfältiger sind, als bisher angenommen. Der Leiter der Studie, Prof. Dr. Alexander Ecker vom selben Institut, erklärt: „Wir haben Verfahren des maschinellen Lernens entwickelt, welche die komplexe 3D-Form einer Nervenzelle in einer Art Strichcode kodieren. Diese Strichcodes können dann visualisiert und analysiert werden.“ Anhand von 30.000 Pyramidenzellen fanden die Forschenden heraus, dass diese fließende Übergänge zwischen Zelltypen aufweisen, anstatt klar abgegrenzter Typen.

Am MICrONS-Projekt, in dessen Rahmen die beiden Studien entstanden, waren zahlreiche Forschungseinrichtungen beteiligt – darunter das Baylor College of Medicine, das Allen Institute for Brain Science und die Princeton University. Im Rahmen dieses Projekts erstellte das Team den „MICrONS Multi-Area Datensatz“. Er umfasst sowohl die Struktur und die Vernetzung von Nervenzellen, als auch ihre Antworteigenschaften auf verschiedene visuelle Reize. Derzeit ist es der größte Datensatz dieser Art, der jemals in einem Säugetiergehirn erhoben wurde. Die Daten wurden in der Hauptstudie „Functional Connectomics Spanning Multiple Areas of Mouse Visual Cortex“ beschrieben.

Die von den Göttinger Forschenden mitentwickelten Modelle wurden unter anderem dazu genutzt, einen „digitalen Zwilling“ der Nervenzellen des MICrONS-Datensatzes zu erstellen. Dieser digitale Zwilling konnte Form und Struktur von Pyramidenzellen erfolgreich vorhersagen, ohne dass anatomische Informationen für das Training verwendet wurden. Das deutet darauf hin, dass funktionelle und anatomische Eigenschaften von Nervenzellen eng miteinander verknüpft sind.

Die Forschungsergebnisse liefern wichtige Einblicke in die Organisation des Gehirns und könnten künftig dazu beitragen, effizientere neurowissenschaftliche Experimente zu ermöglichen. Statt aufwändige und zeitintensive Experimente in-vivo – also im lebenden Tier – durchzuführen, könnten Forschende zunächst Experimente in-silico – also im Modell – durchführen, um vielversprechende Hypothesen zu identifizieren und diese erst anschließend in Experimenten zu verifizieren.

Weiterführende Verlinkungen

Originale Pressemeldung

> mehr

Originale Publikation (1)

> mehr

Originale Publikation (2)

> mehr

Mehr Infos zum Projekt

> mehr

Das Sehsystem durch Augen der KI

14. April 2025/in /von Elena Reiriz Martinez

Kontakt Aktuelles

Kontakt

Prof. Dr. Fabian Sinz

Wissenschaftlicher Ansprechpartner
Georg-August-Universität Göttingen
Institut für Informatik
und
Campus-Institut Data Science
Goldschmidtstraße 1
37077 Göttingen

0551 39-21258
sinz@uni-goettingen.de

Prof. Dr. Alexander S. Ecker

Wissenschaftlicher Ansprechpartner
Georg-August-Universität Göttingen
Institut für Informatik
und
Campus-Institut Data Science
Goldschmidtstraße 1
37077 Göttingen

0551 39-21272
ecker@cs.uni-goettingen.de

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns auf

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen Nach oben scrollen Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten Sie {vendor_count} Lieferanten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}