Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Cologne
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhine-Main Region
      • Bernstein Node Taiwan
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Registration
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Abstract Submission
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / “Nature Machine Intelligence” Study: Language models from Artificial Intelligence can predict how the human brain responds to visual stimuli
Berlin, Germany – August 11, 2025

“Nature Machine Intelligence” Study: Language models from Artificial Intelligence can predict how the human brain responds to visual stimuli

Large language models (LLMs) from the field of artificial intelligence can predict how the human brain responds to visual stimuli. This is shown in a new study published in Nature Machine Intelligence by Professor Adrien Doerig (Freie Universität Berlin) together with colleagues from Osnabrück University, University of Minnesota, and Université de Montréal, titled “High-Level Visual Representations in the Human Brain Are Aligned with Large Language Models.” For the study, the team of scientists used LLMs similar to those behind ChatGPT.

Cognitive neuroscientist Adrien Doerig is guest professor at the Cognitive Computational Neuroscience Lab, Freie Universität Berlin. Image credit: Joëlle Schwitguébel

Bernstein member involved: Adrien Doering

When we look at the world, our brains do not just recognize objects like “a tree” or “a car” – they also grasp meaning, relationships, and context. Until recently, scientists lacked tools to capture and quantitatively investigate this high-level visual understanding. In this new study, a team led by cognitive neuroscientist Adrien Doerig, guest professor at the Cognitive Computational Neuroscience Lab, Freie Universität Berlin, used LLMs to extract “semantic fingerprints” from scene descriptions. The researchers used these “semantic fingerprints” to model functional MRI data recorded while participants viewed everyday images, depicting scenes such as “children playing Frisbee in the schoolyard” or “a dog standing on a sailing boat.” Leveraging LLM representations allowed the team to predict neural activities and to decode textual descriptions of what the people were seeing based only on the neuroimaging measurements.

To predict the semantic fingerprints directly from the images, they also trained computer vision models. These models – guided by linguistic representations – aligned better with human brain responses than state-of-the-art image classification systems.

“Our results suggest that human visual representations mirror how modern language models represent meaning – which opens new doors for both neuroscience and AI,” says Doerig.

Further links

Original press release

> more

Original publication

> more

“Nature Machine Intelligence” Study: Language models from Artificial Intelligence can predict how the human brain responds to visual stimuli

26. August 2025/in /by Alexandra Stein

Kontakt Aktuelles

Contact

Prof. Dr. Adrien Doerig

Freie Universität Berlin
Department of Education and Psychology

adrien.doerig@fu-berlin.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}