Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Köln
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhein-Main Region
      • Bernstein Node Taiwan
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Ethos des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Publikationen des Netzwerks
    • Bernstein Bulletin
    • Presse
  • Forschung und Lehre
    • Forschung und Lehre
    • Meet the Scientist
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
      • Podcasts
  • Karriere
    • Karriere
    • Stellenangebote
    • Praktika und Abschlussarbeiten
  • Bernstein Conference
    • Bernstein Conference
    • Registration
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Abstract Submission
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Studie: KI-Sprachmodelle können vorhersagen, wie das menschliche Gehirn auf visuelle Reize reagiert
Berlin – 11. August 2025

Studie: KI-Sprachmodelle können vorhersagen, wie das menschliche Gehirn auf visuelle Reize reagiert

Große Sprachmodelle (Large Language Models, LLMs) aus der Künstlichen Intelligenz können vorhersagen, wie das menschliche Gehirn auf visuelle Reize reagiert. Das zeigt eine neue Studie von Prof. Dr. Adrien Doerig (Freie Universität Berlin) gemeinsam mit Kolleg*innen der Universitäten Osnabrück, Minnesota und Montréal. Die Studie wurde unter dem Titel „High-level visual representations in the human brain are aligned with large language models“ in Nature Machine Intelligence veröffentlicht. Für die Untersuchung verwendeten die Forschenden LLMs, wie sie auch den Systemen hinter ChatGPT zugrunde liegen.

Der Neurowissenschaftler Adrien Doerig ist Gastprofessor für Kognitive Neurowissenschaft an der Freien Universität Berlin. Bildquelle: Joëlle Schwitguébel

Beteiligtes Bernstein Mitglied: Adrien Doering

Wenn wir die Welt betrachten, erkennt unser Gehirn nicht nur Objekte wie „einen Baum“ oder „ein Auto“ – es erfasst auch Bedeutungen, Beziehungen und Kontexte. Bisher fehlten der Wissenschaft jedoch geeignete Werkzeuge, um dieses hochabstrakte visuelle Verständnis zu erfassen und vergleichend zu analysieren. In der neuen Studie nutzte das Forschungsteam unter Leitung des Kognitiven Neurowissenschaftlers Prof. Dr. Adrien Doerig (Gastprofessor am Cognitive Computational Neuroscience Lab der Freien Universität Berlin) große Sprachmodelle, um sogenannte „semantische Fingerabdrücke“ aus Szenenbeschreibungen zu extrahieren.

Diese semantischen Fingerabdrücke nutzten die Forschenden, um funktionelle MRT-Daten zu modellieren, die beim Betrachten von Alltagsbildern aufgezeichnet wurden – darunter Szenen wie „Kinder, die auf dem Schulhof Frisbee spielen“ oder „ein Hund, der auf einem Segelboot steht“. Die Verwendung von LLM-Repräsentationen ermöglichte es dem Team, die Gehirnaktivitäten vorherzusagen – und sogar allein anhand der Bildgebung rückzuschließen, was die Versuchspersonen gesehen haben.

Um diese semantischen Fingerabdrücke direkt aus den Bildern vorhersagen zu können, trainierte das Team zusätzlich Computervisionsmodelle. Diese Modelle – geleitet durch sprachliche Repräsentationen – stimmten besser mit den gemessenen Gehirnaktivitäten überein als viele der derzeit besten Bildklassifikationssysteme.

„Unsere Ergebnisse deuten darauf hin, dass menschliche visuelle Repräsentationen die Art und Weise widerspiegeln, wie moderne Sprachmodelle Bedeutung darstellen – und eröffnen neue Perspektiven sowohl für die Neurowissenschaft als auch für die KI“, sagt Prof. Dr. Adrien Doerig.

Weiterführende Verlinkungen

Originale Pressemitteilung

> mehr

Originale Publikation

> mehr

Studie: KI-Sprachmodelle können vorhersagen, wie das menschliche Gehirn auf visuelle Reize reagiert

19. August 2025/in /von Alexandra Stein

Kontakt Aktuelles

Kontakt

Prof. Dr. Adrien Doerig

Freie Universität Berlin
Fachbereich Erziehungswissenschaft und Psychologie

adrien.doerig@fu-berlin.de

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns auf

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen Nach oben scrollen Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten Sie {vendor_count} Lieferanten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}