Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Rhine-Main Region
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Program
    • Abstract Submission
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
    • Past Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Spiking neural networks reach a new level
Jülich – November 28, 2024

Spiking neural networks reach a new level

Three studies recently published within just one month by the journal Cerebral Cortex present new models of spiking networks in the brain. Electrical spikes of neurons are at the core of neural information processing. With millions of neurons and billions of synapses, the new generation of open models are powerful tools to study the complex dynamics in large networks, with implications for basic neuroscience, neuromorphic computing and AI. On EBRAINS, researchers will be able to use the large-scale neuronal network models as adaptable building blocks in their investigations and combine them with other brain simulation tools across scales.

©FZJ/SBC Lehmann

Bernstein members involved: Renato Duarte, Markus Diesmann, Claus Hilgetag, Renan Shimoura, Sacha van Albada, Alexander van Meegen

Spikes are electric impulses that a neuron can fire out to all its connected cells. These signals are key to the relay of information in the brain. The way they originate at the neurons and can be recorded with different methods, but practical limitations prevent us from being able to experimentally trace the spiking in more than a few hundred neurons simultaneously on the scale of larger networks.

New computational models with enhanced network size and complexity now give a window into phenomena that occur in interactions across large spiking networks. The mathematical models are based on abstract networks with simplified point neurons and investigated with the NEST simulator on EBRAINS. The new models expand from a previous highly detailed microcircuit model representing neuronal network of below a square millimeter of cortical surface.

The three new models reflect further cell types, larger cortical volumes and the incorporation of long-range connectivity. The full-scale models of the neuronal network in cortical tissue replicate the enormous density of connections of neurons and synapses found in nature. Network dynamics therefore can be studied at a large scale, while the behavior of the individual elements is traceable at all points.

To go even deeper, the network simulations can be connected to LFPy, a simulation engine on EBRAINS for the study of electrical fields based on highly detailed neuron models. Similarly, NEST also has an interface for co-simulation with The Virtual Brain on EBRAINS, a whole-brain network simulation engine based on mean-field models. For researchers this enables so-called multiscale investigations – spanning the macroscopic level, the large-scale network level, and the level of morphologically detailed neurons.

Further links

Original press release & links to studies

> more

Spiking neural networks reach a new level

2. December 2024/in /by Alexander Lammers

Kontakt Aktuelles

Contact

Prof. Dr. Sacha van Albada

Forschungszentrum Jülich
Institute for Advanced Simulations (IAS-6)
Computational and Systems Neuroscience
& Institut für Zoologie
Universität zu Köln

s.van.albada@fz-juelich.de

Dr. Johanna Senk

Forschungszentrum Jülich
Institute for Advanced Simulations (IAS-6)
Computational and Systems Neuroscience
& Sussex AI
School of Engineering and Informatics
University of Sussex

J.Senk@sussex.ac.uk

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}