Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Cologne
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhine-Main Region
      • Bernstein Node Taiwan
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Energy-efficient thinking: What AI can learn from the brain
Frankfurt am Main, Germany / Clermont-Ferrand, France – October 8, 2025

Energy-efficient thinking: What AI can learn from the brain

Biological brains are extremely energy-efficient. Can artificial intelligence learn a few tricks from them? Researchers at FIAS and colleagues from France describe new findings on energy-efficient information processing in the journal Nature Communications.

Chips modeled on the brain could make AI more energy efficient. (Cyber-brain, Kohji Asakawa / Pixabay)

A press release from the Frankfurt Institute for Advanced Studies

Bernstein member involved: Jochen Triesch

The human brain is a master at saving energy: it needs only about 20 watts—about as much as a modern freezer—to perform trillions of calculations per second. Can such findings contribute to a new generation of more energy-efficient artificial intelligence (AI)? Two mechanisms appear to play a decisive role in the brain’s energy efficiency: The brain’s nerve cells communicate via single small electrical voltage impulses called action potentials. Artificial neural networks, as commonly used in AI, on the other hand, operate at continuous activity levels, which consumes much more energy. In addition, the brain appears to only pass on information from one processing stage to the next that could not already be predicted. This describes the theory of predictive coding, according to which the brain constantly generates predictions about the future. Omitting information that was already predictable also saves energy.

However, information processing with action potentials and predictive coding do not seem to match very well. Encoding information using action potentials makes it difficult to distinguish predicted signals from actual signals. It therefore remains unclear whether the brain actually uses predictive coding and, if so, how it could achieve this with action potentials. Here, Antony N’dri and colleagues propose a new theoretical approach that could solve this problem: inhibitory synapses, which reduce the activity of nerve cells, could learn to suppress action potentials that are particularly easy to predict. This saves energy in the areas where the least new information is delivered. The working group led by FIAS Senior Fellow Jochen Triesch calls this new approach Predictive Coding Light – a “light” variant of predictive coding because signals that are particularly easy to predict are suppressed. In contrast to conventional predictive coding, not only prediction errors are forwarded to higher processing levels, but also a compressed representation of the actual data.

In their work, the researchers simulate a specific network model on a computer that implements these ideas and learns to process visual information. Remarkably, the model can reproduce a variety of biological observations from the primary visual cortex, the first stage of visual information processing in the cerebral cortex. In particular, it explains several neurobiological findings that are considered typical of predictive coding. In addition, the team tested the neural network on technical tasks such as gesture recognition and handwritten digit recognition. Their approach achieves significant energy savings without severely compromising recognition performance. “The importance of inhibitory synapses may have been underestimated so far,” explains Triesch. “They were considered to be rather unspecific ‘brakes’ that prevent brain activity from getting out of control, for example during an epileptic seizure. We suspect that inhibitory synapses play a central role in how the brain learns to encode and process sensory information in an energy-efficient manner.”

However, it may be some time before these findings find their way into our smartphones. The architecture of today’s AI chips is very different from that of the brain. So far, it is only a small but quickly growing community of researchers who are pushing ahead the development of neuromorphic chips, i.e., chips modeled on the brain, to make AIs more energy efficient.

Further links

Original press release (FIAS)

> more

Original publication

> more

Energy-efficient thinking: What AI can learn from the brain

16. October 2025/in Ausgewählter Aktuelles-Post für die Startseite /by Elena Reiriz Martinez

Kontakt Aktuelles

Contact

Anja Störiko

Press contact
Frankfurt Institute for Advanced Studies (FIAS)
Press office
Ruth-Moufang-Straße 1
60438 Frankfurt am Main
Germany

+49 (0)69 798 47507 or +49 6192 23605
presse@fias.uni-frankfurt.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}