Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Cologne
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhine-Main Region
      • Bernstein Node Taiwan
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / Software optimizes simulations of the brain
Tübingen, Germany – November 13, 2025

Software optimizes simulations of the brain

A new software enables brain simulations which both imitate the processes in the brain in detail and can solve challenging cognitive tasks. The program was developed by a research team at the Cluster of Excellence ‘Machine Learning: New Perspectives for Science’ at the University of Tübingen. The software thus forms the basis for a new generation of brain simulations which allow deeper insights into the functioning and performance of the brain. The Tübingen researchers’ paper has been published in the journal Nature Methods.

Artificial neuronal networks (right of picture) mimic real networks of nerve cells (left of picture). Diagram: Franz-Georg Stämmele

Bernstein members involved: Philipp Berens, Michael Deistler, Pedro Gonçalves, Janne Lappalainen, Jakob Macke, Matthijs Pals, Cornelius Schröder

For decades researchers have been trying to create computer models of the brain in order to increase understanding of the organ and the processes that take place there. Using mathematical methods they have simulated the behavior and interaction of nerve cells and their compounds. However, previous models had significant weaknesses: They were either based on oversimplified neuron models and therefore strayed significantly from biological reality, or they depicted the biophysical processes within cells in detail, but were incapable of carrying out similar tasks to the brain. “Either the path is similar to that in the brain, but the result is not, or the result is correct but the process that leads there does not compare with the processes in the brain,” explains Michael Deistler, first author of the study and researcher in Professor Jakob Macke’s work group. Jaxley, as the new program is called, allows the training of brain models such that both apply – an important step towards being able to draw conclusions from the model about the actual processes in the brain.

This has been achieved using a method that is also used to train artificial neuronal networks: ‘backpropagation of error’. With the aid of backpropagation, an artificial neuronal network adjusts its parameters during training so that a given input results in a desired output. The network keeps adapting itself until it reliably achieves the desired task. In this way, the network learns which features and connections in the data are important to a specific process, in order also to deliver the correct results given new, similar examples. The Tübingen researchers have transferred this training principle to brain simulations.

Detailed brain models carry out challenging tasks

When the brain carries out a task, there are hundreds of important parameters in the neurons that are involved. This may for example be the size of the neurons, the strength of connections or the number of ion channels. “Many of these parameters cannot be measured. Until now this has made it impossible to developed exact simulations that produce good results,” says Deistler. “Jaxley can train these non-measurable parameters in brain models. The software repeatedly changes their values, repeatedly readjusts, until the simulation reaches the desired result.” After training, the resulting brain models were for example capable of classifying images or storing and accessing memories.

“Thanks to Jaxley we can now study how neuronal mechanisms contribute to solving tasks,” says Jakob Macke, Professor of Machine Learning in Science at the University of Tübingen and last author of the study. “The software will allow neuroscientists to investigate the complexity of the brain and depict it in computer simulations.” Long-term such simulations could also be applied in medicine, for instance in order to understand neurological diseases better or virtually study the effect of medicines in advance.

The president of the University of Tübingen Professor Dr. Dr. h.c. (Dōshisha) Karla Pollmann says: “This work is a striking demonstration of how machine learning can enrich other areas of science: Artificial intelligence is a key technology which opens up new horizons for basic research.”

Further links

Original press release

> more

Original publication

> more

Software optimizes simulations of the brain

21. November 2025/in Ausgewählter Aktuelles-Post für die Startseite /by Elena Reiriz Martinez

Kontakt Aktuelles

Contact

Prof. Dr. Jakob Macke

Scientific contact
University of Tübingen
Cluster of Excellence ‘Machine Learning: New Perspectives for Science’

jakob.macke@uni-tuebingen.de

Michael Deistler

Scientific contact
University of Tübingen
Cluster of Excellence ‘Machine Learning: New Perspectives for Science’

michael.deistler@uni-tuebingen.de

Michael Pfeiffer

Press Officer
Public Relations Department
Eberhard Karls Universität Tübingen

+49 7071 29-76782
michael.pfeiffer@uni-tuebingen.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}