Bernstein Network Computational Neuroscience
  • Home
  • Network
    • The Bernstein Network
    • Bernstein Centers
      • Berlin
      • Freiburg
      • Göttingen
      • Munich
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Cologne
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhine-Main Region
      • Bernstein Node Taiwan
    • Research Infrastructure
      • High Performance Simulation and Data Analysis
      • Research Data Management
      • Science Communication
      • Scientific Coordination
    • Awards and Initiatives
      • Valentin Braitenberg Award
      • Brains for Brains Young Researcher Award
      • Bernstein SmartSteps
    • Committees
    • Mission Statement
    • Statutes
    • Membership
    • History
    • Donation
    • Contact
  • Newsroom
    • Newsroom
    • News
    • Events
    • Calls
    • Media Coverage
    • Network Publications
    • Bernstein Bulletin
    • Press
  • Teaching and Research
    • Teaching and Research
    • Meet the Scientist
    • Find a Scientist
    • Degree Programs
      • Master Programs
      • PhD Programs
    • Study and Training
      • Bernstein Student Workshop Series
      • Online Learning
      • Advanced Courses
      • Internships and Master theses
      • Podcasts
  • Career
    • Career
    • Job Pool
    • Internships and Master theses
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Search
  • Menu Menu
You are here: Home1 / Newsroom2 / News3 / AI that thinks like us – and could help explain how we think
Munich, Germany – July 2, 2025

AI that thinks like us – and could help explain how we think

Researchers at Helmholtz Munich have developed an artificial intelligence model that can simulate human behavior with remarkable accuracy. The language model, called Centaur, was trained on more than ten million decisions from psychological experiments – and makes decisions in ways that closely resemble those of real people. This opens new avenues for understanding human cognition and improving psychological theories.

Digital brain interface activated by a man, highlighting the connections between human cognitive abilities and artificial intelligence / Image: Helmholtz Munich

Bernstein members involved: Matthias Bethge, Peter Dayan, Alireza Modirshanechi

For decades, psychology has aspired to explain the full complexity of human thought. Yet traditional models could either offer a transparent explanation of how people think – or reliably predict how they behave. Achieving both has long seemed out of reach. The team led by Dr. Marcel Binz and Dr. Eric Schulz, both researchers at the Institute for Human-Centered AI at Helmholtz Munich, has now developed a model that combines both. Centaur was trained using a specially curated dataset called Psych-101, which includes over ten million individual decisions from 160 behavioral experiments.

What makes Centaur unique is its ability to predict human behavior not only in familiar tasks, but also in entirely new situations it has never encountered before. It identifies common decision-making strategies, adapts flexibly to changing contexts – and even predicts reaction times with surprising precision. “We’ve created a tool that allows us to predict human behavior in any situation described in natural language – like a virtual laboratory,” says Marcel Binz, who is also the study’s lead author. Potential applications range from analyzing classic psychological experiments to simulating individual decision-making processes in clinical contexts – for example, in depression or anxiety disorders. The model opens up new perspectives in health research in particular – for example, by helping us understand how people with different psychological conditions make decisions. The dataset is set to be expanded to include demographic and psychological characteristics.

Centaur: Bridging Theory and Prediction

Centaur bridges two previously separate domains: interpretable theories and predictive power. It can reveal where classical models fall short – and provide insights into how they might be improved. This opens up new possibilities for research and real-world applications, from medicine to environmental science and the social sciences. “We’re just getting started and already seeing enormous potential,” says institute director Eric Schulz. Ensuring that such systems remain transparent and controllable is key, Binz adds – for example, by using open, locally hosted models that safeguard full data sovereignty.

Next, the researchers aim to take a closer look inside Centaur: Which computational patterns correspond to specific decision-making processes? Can they be used to infer how people process information – or how decision strategies differ between healthy individuals and those with mental health conditions? The researchers are convinced: “These models have the potential to fundamentally deepen our understanding of human cognition – provided we use them responsibly.” That this research is taking place at Helmholtz Munich rather than in the development departments of major tech companies is no coincidence. “We combine AI research with psychological theory – and with a clear ethical commitment,” says Binz. “In a public research environment, we have the freedom to pursue fundamental cognitive questions that are often not the focus in industry.”

What is Psych-101?

Psych-101 is a dataset specifically compiled by the team led by Marcel Binz for training the Centaur AI model. It contains over ten million individual decisions made by more than 60,000 participants across 160 psychological experiments. These experiments cover a wide range of human behavior – from risk-taking and reward learning to moral dilemmas.The researchers manually processed and standardized all the data to ensure that it could be interpreted by a language model. As such, Psych-101 represents a unique resource for systematically modeling human behavior based on natural language inputs.

Further links

Original press release

> more

Original publication

> more

AI that thinks like us – and could help explain how we think

8. July 2025/in /by Elena Reiriz Martinez

Kontakt Aktuelles

Contact

Dr. Marcel Binz

Scientific contact
Helmholtz Munich (Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH)

marcel.binz@helmholtz-munich.de

Verena Schulz

Press contact
COMS Communications & Strategic Relations
Helmholtz Munich (Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH)

+49 89 3187 49342
presse@helmholtz-muenchen.de

Bernstein Netzwerk Computational Neuroscience Logo

Become a member
Statutes
Donation
Subscribe to Newsletter

 

Follow us on

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Network Computational Neuroscience
  • Contact
  • Imprint
  • Privacy Policy
Scroll to top Scroll to top Scroll to top
Cookie-Zustimmung verwalten
We use cookies to optimize our website and our service.
Functional Always active
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistics
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
Settings
{title} {title} {title}