Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Meet the Scientist
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Presse
    • Publikationen des Netzwerks
    • Bernstein Bulletin
  • Forschung und Lehre
    • Forschung und Lehre
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series 2023
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
    • Ethos des Bernstein Netzwerks
  • Karriere
    • Karriere
    • Stellenangebote
    • Verstärken Sie unser Team
  • Bernstein Conference
    • Bernstein Conference
    • Call for Satellite Workshops
    • General Information
      • Tentative Schedule
      • Past Conferences
    • FAQ
  • DE
  • EN
  • Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Kommunikation zwischen neuronalen Netzwerken
Freiburg – 17. Dezember 2018

Kommunikation zwischen neuronalen Netzwerken

Forscher des Bernstein Center Freiburg und Kollegen schlagen ein neues Modell vor, wie neuronale Netzwerke in unterschiedlichen Gehirnarealen miteinander kommunizieren

Wie kommunizieren Nervennetzwerke im Gehirn miteinander? Das Bernstein Center Freiburg schlägt dafür ein neues Modell vor. © BCF

/Uni Freiburg/ Das Gehirn ist als ein Netzwerk von spezialisierten Netzwerken aus Nervenzellen organisiert. Damit eine solche Gehirnarchitektur funktioniert, müssen diese spezialisierten Netzwerke – jeweils in verschiedenen Gehirnarealen lokalisiert – miteinander kommunizieren können. Aber unter welchen Bedingungen findet Kommunikation statt und welche Steuerungsmechanismen wirken? Forscher des Bernstein Center Freiburg und Kollegen in Spanien und Schweden schlagen dafür ein neues Modell vor, das drei – scheinbar unterschiedliche – Erklärungsmodelle miteinander kombiniert. Ihre Schlussfolgerungen sind nun in Nature Reviews Neuroscience veröffentlicht.

Die Synthese von Dr. Gerald Hahn, Pompeu Fabra University, Barcelona/Spanien, Prof. Dr. Ad Aertsen, Bernstein Center Freiburg, Prof. Dr. Arvind Kumar, ehemals Bernstein Center Freiburg, jetzt Königliche Technische Hochschule (KTH) Royal Institute of Technology, Stockholm/Schweden und Kollegen basiert auf der Theorie dynamischer Systeme. Sie berücksichtigt insbesondere, wie der Aktivitätszustand der jeweiligen Netzwerke den Nachrichtenaustausch beeinflusst. Die Studie kombiniert dabei drei bislang vorgeschlagenen Erklärungsmodelle: Synfire-Kommunikation, Kommunikation durch Kohärenz und Kommunikation durch Resonanz.

„Wir glauben, dass unsere Arbeit helfen kann, besser zu verstehen, wie Neuronenpopulationen, je nach Zustand ihrer Netzwerkaktivität, interagieren und ob Nachrichten von einer Neuronengruppe im Gehirnbereich A eine Neuronengruppe im Gehirnbereich B erreichen können oder nicht“, sagt Arvind Kumar. „Ein solches Verständnis ist eine wesentliche Voraussetzung, um Hirnfunktion nicht nur lokal, innerhalb eng begrenzter Bereiche eines Hirnareals verstehen zu können, sondern auch mehr global, über Hirnareale hinweg.“

Besonders interessierte die Wissenschaftler, welche Rolle die im Gehirn auftretenden Aktivitätsschwingungen – so genannte Oszillationen – für die Kommunikation spielen. Solche Oszillationen betreffen typischerweise große Gruppen von Neuronen bis hin zu ganzen Hirnarealen und können entweder langsam sein, wie Alpha- oder Theta-Rhythmen, oder schnell, wie der Gammarhythmus. Die Forscher konnten im theoretischen Modell zeigen, dass die Interaktion dieser Rhythmen miteinander maßgeblich darüber entscheidet, ob Kommunikation zwischen Netzwerken möglich ist oder nicht. Bestimmte Verschachtelungen solcher Rhythmen könnten dabei als wichtige Steuerungsmechanismen wirken.

„Die Möglichkeit zum Nachrichtenaustausch hängt von vielen Faktoren ab, zum Beispiel, ob die Schwingungen schnell oder langsam, die Frequenzen ähnlich oder unterschiedlich sind, wie die Phasen zueinander in Beziehung stehen und so weiter“, erklärt Ad Aertsen. „Mit unserem Modell können wir jetzt für jeden dieser Fälle spezifische Vorhersagen treffen. In einem nächsten Schritt könnten diese dann experimentell getestet werden.“

>> zur originalen Pressemitteilung

Originalpublikation

Hahn, G./Ponce-Alvarez, A./Deco, G./Aertsen, A./Kumar, A. (2018): Portraits of communication in neuronal networks. In: Nature Reviews Neuroscience. https://www.nature.com/articles/s41583-018-0094-0

Kommunikation zwischen neuronalen Netzwerken

13. Januar 2021/in /von Alexandra Stein

Kontakt Aktuelles

Kontakt

Prof. Dr. Ad Aertsen

Fakultät für Biologie / Bernstein Center Freiburg
Albert-Ludwigs-Universität Freiburg

+49 761 203-9550
aertsen@biologie.uni-freiburg.de

Prof. Dr. Arvind Kumar

Department of Computational Science and Technology
KTH Royal Institute of Technology

+46 (8) 790 62 24
arvkumar@kth.se

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns

Mastodon
© 2023 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Anbieter verwalten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}