Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Meet the Scientist
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Presse
    • Publikationen des Netzwerks
    • Bernstein Bulletin
  • Forschung und Lehre
    • Forschung und Lehre
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series 2023
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
    • Ethos des Bernstein Netzwerks
  • Karriere
    • Karriere
    • Stellenangebote
    • Verstärken Sie unser Team
  • Bernstein Conference
    • Bernstein Conference
    • Call for Satellite Workshops
    • General Information
      • Tentative Schedule
      • Past Conferences
    • FAQ
  • DE
  • EN
  • Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Versteckte Dynamik in neuronalen Netzwerken entdeckt
Jülich – 16. Juli 2019

Versteckte Dynamik in neuronalen Netzwerken entdeckt

Neuronale Netzwerke im Gehirn können Informationen dann besonders gut verarbeiten, wenn sie sich in der Nähe eines kritischen Punkts befinden. Davon gingen Hirnforscher bis jetzt aufgrund theoretischer Überlegungen aus. Doch in experimentellen Untersuchungen der Hirnaktivität fanden sich viel weniger Anzeichen für solche kritischen Zustände, als eigentlich zu erwarten wäre. Wissenschaftlerinnen und Wissenschaftler des Forschungszentrums Jülich und der RWTH Aachen liefern dafür nun eine mögliche Erklärung. Sie wiesen nach, dass sich neuronale Netzwerke in einem zweiten, bislang unbekannten kritischen Modus befinden können, dessen versteckte Dynamik sich mit den gängigen Messverfahren kaum erfassen lässt.

Die heterogene, kritische Dynamik zeigt keinen lawinenartigen Anstieg, sondern manifestiert sich in spezifischen Projektionen der Nervenzellen-Aktivität, bei denen Neurone unterschiedlich gewichtet werden – was einem unterschiedlich stark aktivierenden oder hemmenden Einfluss einzelner Neurone entspricht.
 © Forschungszentrum Jülich/ Sebastian Lehmann

/FZJ/ Kritische Punkte, an denen komplexe Systeme schlagartig ihre Eigenschaften ändern, sind aus der Physik bekannt. Ein Beispiel sind ferromagnetische Materialien. Unterhalb der kritischen Temperatur, der sogenannten Curie-Temperatur, richten sich die Elektronenspins des Materials aus, sodass sie in die gleiche Richtung zeigen. Dabei addieren sich die winzigen magnetischen Momente der einzelnen Spins, was von außen als spontane Magnetisierung des Materials gemessen werden kann.

Eine ganz ähnliche Dynamik konnte bereits früher in Messungen der Hirnaktivität festgestellt werden. Typisch sind Hirnsignale, bei denen in kürzester Zeit lawinenartig große Bereiche des Netzwerks gleichzeitig aktiv werden. Insgesamt tritt das Phänomen aber deutlich seltener auf, als eigentlich zu erwarten wäre. Wissenschaftler des Forschungszentrums Jülich und der RWTH Aachen haben im Fachmagazin PNAS nun eine Lösung für den scheinbaren Widerspruch präsentiert. Sie haben nachgewiesen, dass neuronale Netzwerke noch eine zweite, bislang unbekannte Art von Kritikalität aufweisen können.

Bei dieser zweiten Form von Kritikalität koordiniert sich ebenfalls eine große Anzahl von Nervenzellen, wie die Analyse der gleichzeitigen Aktivität von 155 Nervenzellen zeigt. Das Zusammenspiel umfasst hier allerdings nicht nur die gleichzeitige Aktivierung, sondern auch die gezielte Hemmung großer Gruppen von Neuronen. Die gefundene, neuartige Kritikalität erlaubt es dem Netzwerk, Signale in einer Vielzahl von Kombinationen aus aktivierten Neuronen zu repräsentieren und damit, so vermuten die Forscherinnen und Forscher, Information effizient parallel zu verarbeiten.

Zudem erklärt sich, warum von außen kein plötzlicher Anstieg der Netzwerkaktivität feststellbar ist. Standardverfahren wie EEG oder LFP addieren im Wesentlichen die Signale vieler Neurone; bei diesem zweiten kritischen Zustand bleibt die Zahl der aktiven Nervenzellen jedoch weitgehend konstant. Die heterogene Dynamik lässt sich mit diesen Verfahren daher nicht erfassen. Erst mit hochentwickelten mathematischen Methoden, die sie aus der statistischen Physik entlehnt haben, gelang es den Forschern unter der Leitung von Prof. Moritz Helias experimentell überprüfbare Vorhersagen über die Korrelationen zwischen den Nervenzellen zu machen.

Für den direkten experimentellen Nachweis ihres in Theorie und Simulation vorhergesagten Netzwerkzustandes nutzten die Forscher um Erstautor Dr. David Dahmen die Expertise von Prof. Sonja Grün in der Analyse der gemeinsamen Aktivität vieler Nervenzellen. „Der weitergehende Wert dieser Studie liegt für mich darin, dass es Prof. Helias und seinem Team gelungen ist, die in der Physik sehr erfolgreiche Methode der Feld-Theorie in der Neurowissenschaft zur Anwendung zu bringen und wir damit auf weitere Einsichten hoffen können“, erklärt Institutsleiter Prof. Markus Diesmann (INM-6). Diesmann spielt eine tragende Rolle im europäischen Human Brain Project (HBP), einem der größten neurowissenschaftlichen Projekte weltweit, das die Arbeit von über 500 Forschern in 19 EU-Mitgliedsstaaten verbindet. „Im HBP beschäftigen wir uns mit der Technologie, um große Teile des Gehirns mit all ihren Nervenzellen simulieren zu können. Diese Simulationen alleine schaffen aber noch keine Erkenntnis. Wir erhalten dann einfach simulierte Daten, die genauso kompliziert sind wie die Daten aus der Natur, allerdings können wir die Netzwerke viel gezielter verändern, als dies mit experimentellen Methoden möglich ist. Aber erst die kontrollierte Vereinfachung zu überschaubaren mathematischen Modellen mit wenigen Gleichungen gibt uns die Chance, die zugrunde liegenden Mechanismen zu verstehen“, erläutert Markus Diesmann.

>> originale Pressemitteilung

Originalpublikation

Second type of criticality in the brain uncovers rich multiple-neuron dynamics, David Dahmen, Sonja Grün, Markus Diesmann, Moritz Helias
Proceedings of the National Academy of Sciences (published 12 June 2019), DOI: 10.1073/pnas.1818972116

Versteckte Dynamik in neuronalen Netzwerken entdeckt

15. Dezember 2020/in /von Alexandra Stein

Kontakt Aktuelles

Kontakt

Prof. Dr. Moritz Helias

Forschungszentrum Jülich & Department of Physics, RWTH Aachen University

+49 2461 61-9467
m.helias@fz-juelich.de

Tobias Schlößer

Pressereferent
Forschungszentrum Jülich

+49 2461 61-4771
t.schloesser@fz-juelich.de

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns

Mastodon
© 2023 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Anbieter verwalten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}