Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Meet the Scientist
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Presse
    • Publikationen des Netzwerks
    • Bernstein Bulletin
  • Forschung und Lehre
    • Forschung und Lehre
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series 2023
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
    • Ethos des Bernstein Netzwerks
  • Karriere
    • Karriere
    • Stellenangebote
    • Verstärken Sie unser Team
  • Bernstein Conference
    • Bernstein Conference
    • Call for Satellite Workshops
    • General Information
      • Tentative Schedule
      • Past Conferences
    • FAQ
  • DE
  • EN
  • Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Neuer KI-Algorithmus – Künstliche Intelligenz auf Schrödingers Spuren
Warwick/ Luxemburg/ Berlin – 15. November 2019

Neuer KI-Algorithmus – Künstliche Intelligenz auf Schrödingers Spuren

Neuer KI-Algorithmus bestimmt die chemische Struktur anhand der gewünschten Funktion

© freepik

/TUB/ uni.lu/ University of Warwick/
Künstliche Intelligenz (KI) und Algorithmen für maschinelles Lernen werden heute routinemäßig verwendet, um unser Kaufverhalten vorherzusagen, Reiserouten vorzuschlagen oder Bilder und Gesichter zu erkennen. In der Forschung etabliert sich KI gerade als ein entscheidendes Instrument zur Unterstützung von wissenschaftlichen Entdeckungen. So wird KI in der Chemie immer häufiger eingesetzt, um die Ergebnisse von Experimenten oder Simulationen vorherzusagen. Um dies zu erreichen, muss KI in der Lage sein, die grundlegenden Gesetze der Physik systematisch mit einzubeziehen. Ein interdisziplinäres Team von Wissenschaftlern der Universität Warwick, der TU Berlin und der Universität Luxemburg hat jetzt einen KI-Algorithmus entwickelt, der es unter anderem erlaubt, anhand der gewünschten chemischen Eigenschaften einer Substanz, die dafür notwendige Struktur zu bestimmen. Eine Fähigkeit, die besonders bei der Entwicklung von neuartigen Medikamenten und Materialien eine wichtige Rolle spielen könnte.

Der von den Chemikern, Physikern und Informatikern entwickelte Algorithmus ist in der Lage, die Quantenzustände eines Moleküls, die sogenannte Wellenfunktion, die alle Eigenschaften dieses Moleküls bestimmen, zu berechnen. Dazu musste die KI lernen, grundlegende Gesetze der Physik zu verinnerlichen und Gleichungen der Quantenmechanik – wie zum Beispiel die Schrödingergleichung – zu lösen. Die Arbeit „Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunction” wurde jetzt in Nature Communications veröffentlicht.

Das Lösen dieser und ähnlicher Gleichungen auf herkömmliche Weise erfordert enorme Rechnerkapazitäten und vor allem auch Monate an Rechnerzeit. „Genau hier liegt normalerweise der Engpass bei der rechnergestützten Entwicklung neuer, speziell für medizinische und industrielle Anwendungen entwickelter Moleküle“, so Prof. Dr. Klaus-Robert Müller, Professor für maschinelles Lernen an der TU Berlin. Der neu entwickelte Algorithmus kann dagegen auf einem Laptop oder Mobiltelefon innerhalb von Sekunden genaue Vorhersagen liefern.

„Die Veröffentlichung ist das Ergebnis einer dreijährigen gemeinsamen Anstrengung und erforderte Informatik-Know-how, um einen Algorithmus zu entwickeln, der flexibel genug ist, um die Form und das Verhalten von Wellenfunktionen zu erfassen, aber auch Chemie- und Physik-Know-how, um quantenchemische Daten zu verarbeiten und dazustellen“, so Dr. Reinhard Maurer vom Fachbereich Chemie der Universität Warwick.

Klaus-Robert Müller ergänzt: „Diese interdisziplinäre Arbeit ist ein wichtiger Fortschritt, denn sie zeigt, dass KI-Methoden die schwierigsten Aspekte der quantenchemischen Simulation erlernen können. Dazu gehört auch das sogenannte inverse Design, das besonders für die Medikamentenherstellung ein langjähriger Traum der Pharmakologie und der Chemie ist.“ Von inversem Design spricht man, wenn man eine bestimmte chemische Eigenschaft eines Moleküls vorgibt und aus diesen Vorgaben die entsprechende molekulare Struktur entwirft und optimiert. Das interdisziplinäre Team geht davon aus, dass sich KI-Methoden zukünftig weiter als wesentlicher Bestandteil in der Computerchemie und der Molekularphysik etablieren werden und auch nachhaltig das inverse molekulare Design ermöglichen werden.

„Diese Arbeit ermöglicht eine neue Ebene des Wirkstoffdesigns, bei der sowohl die elektronischen als auch die strukturellen Eigenschaften eines Moleküls zusammengeführt werden können, um die gewünschten Anwendungskriterien zu erreichen“, so Professor Dr. Alexandre Tkatchenko vom Fachbereich Physik der Universität Luxemburg.

>> originale Pressemitteilung

Originalpublikation

„Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunction” https://www.nature.com/articles/s41467-019-12875-2

Neuer KI-Algorithmus – Künstliche Intelligenz auf Schrödingers Spuren

2. Dezember 2020/in /von Alexandra Stein

Kontakt Aktuelles

Kontakt

Prof. Dr. Klaus-Robert Müller

TU Berlin
Fachgebiet Maschinelles Lernen

+49 30 314-78620

Alice Scott

Media Relations Manager – Science
University of Warwick

+44 2476 574 255
alice.j.scott@warwick.ac.uk

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns

Mastodon
© 2023 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Anbieter verwalten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}