Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Meet the Scientist
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Presse
    • Publikationen des Netzwerks
    • Bernstein Bulletin
  • Forschung und Lehre
    • Forschung und Lehre
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series 2023
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
    • Ethos des Bernstein Netzwerks
  • Karriere
    • Karriere
    • Stellenangebote
    • Verstärken Sie unser Team
  • Bernstein Conference
    • Bernstein Conference
    • Call for Satellite Workshops
    • General Information
      • Tentative Schedule
      • Past Conferences
    • FAQ
  • DE
  • EN
  • Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / BIFOLD-Wissenschaftler:innen an der TU Berlin gelingt Simulation von komplexen Quantensystemen
Berlin – 26. Januar 2023

BIFOLD-Wissenschaftler:innen an der TU Berlin gelingt Simulation von komplexen Quantensystemen

Realitätsnah und exakt - Neuer Algorithmus ermöglicht die Simulation von komplexen Quantensystemen

Abbildung: Stefan Chmiela

Beteiligte Bernstein-Mitglieder: Klaus-Robert Müller

Die Quanteneigenschaften von Atomen prägen zahllose biochemische und physikalische Prozesse. Zahlreiche wissenschaftliche Herausforderungen sind an das Verständnis vieler interagierender Atome über die Zeit geknüpft. Diese Wechselwirkungen unterliegen den Gesetzen der Quantenmechanik. Beispiele reichen unter anderem von der Strukturbildung von Nukleinsäuren im Erbgut, bis zum Abbau schädlicher Moleküle in der Atmosphäre.
Eine besondere Herausforderung solcher Quantensysteme sind ihre Korrelationen in Raum und Zeit: Ihre interessantesten Eigenschaften resultieren nicht aus der Aufaddierung der Beiträge einzelner Atome, sondern aus vielfältigen atomaren Korrelationen. Im Ergebnis können Quantensysteme nicht problemlos mathematisch modelliert werden. Eine direkte Modellierung der komplizierten Korrelationen würde vorhandene Rechenkapazitäten sprengen. Ein internationales Team von Wissenschaftler:innen des Berlin Institute for the Foundations of Learning and Data (BIFOLD) an der TU Berlin, der Université du Luxembourg und Google hat nun erfolgreich einen maschinellen Lernalgorithmus entwickelt, um genau dieses Problem zu lösen.

Der entwickelte Lernalgorithmus rekonstruiert sogenannte globale Kraftfelder auf Grundlage von Methoden des maschinellen Lernens (ML), ohne unzulässige Vereinfachungen vorzunehmen. Der Begriff globale Kraftfelder umschreibt in diesem Kontext, den Ansatz sämtliche atomaren Wechselwirkungen (wie zum Beispiel elektrostatische, chemische, etc.) in einem Molekül zu betrachten, im Gegensatz zu der ansonsten gängigen Praxis, die Anzahl der modellierten atomaren Interaktionen aus Gründen der Berechenbarkeit zu reduzieren.

Mehr als die Summe aller Teile

„Quantenzustände von Elementarteilchen sind untrennbar miteinander verbunden und einzelne Bestandteile können nicht eigenständig agieren, ohne das System als Ganzes zu beeinflussen“, erklärt Dr. Alexandre Tkatchenko, Professor für Theoretische Chemische Physik an der Université du Luxembourg. Diese Eigenschaft ist einer der weitreichendsten Unterschiede zwischen der Quantenmechanik und den klassischen Newtonschen und elektrostatischen Wechselwirkungen, welche intuitiv aus dem Alltag bekannt sind. Sie stellt auch ein Dilemma bei der Modellierung von Quantensystemen dar: Ein allgegenwärtiges Paradigma in der Entwicklung von Algorithmen und ein wichtiger Baustein in der Modellierung von atomaren Interaktionen ist die Zerlegung eines Problems in kleinere unabhängige Teile, um die Rechenlast zu verringern. Bei der Betrachtung von Quantensystemen ist das aufgrund der oben genannten Eigenschaften nicht möglich.

Globale Kraftfelder, die in der Lage sind, kollektive Wechselwirkungen vieler Atome in molekularen Systemen zu erfassen, lassen sich mit Hilfe von maschinellen Lernmethoden derzeit nur bis zu einigen Dutzend Atomen skalieren, da die Modellkomplexität mit der Größe des untersuchten Systems erheblich zunimmt. Genau diese Herausforderung ging das Team an und entwickelte einen Algorithmus, um globale Kraftfelder für Systeme mit bis zu mehreren hundert Atomen zu trainieren, ohne dabei komplexe Korrelationen zu ignorieren. Ihr Ansatz zerlegt die stark gekoppelten atomaren Wechselwirkungen innerhalb des Modells sorgfältig in einen sogenannten kollektiven niederdimensionalen Teil, der wiederkehrende Wechselwirkungsmuster enthält und in ein sogenanntes Residuum, das die Beiträge individueller Wechselwirkungen beschreibt. Diese Trennung ermöglicht es, beide Bestandteile des Kraftfeld-Rekonstruktionsproblems unabhängig voneinander zu lösen. Dabei werden die numerischen Eigenschaften jedes Teilproblems, herbeigeführt durch unvermeidbare Rundungsfehler beim computergestützten Rechnen, gezielt berücksichtigt. Auf diese Weise können globale Kraftfelder auf Grundlage größerer Referenzdatensätze rekonstruiert werden, um komplexere Interaktionen darzustellen, wie sie zum Beispiel in großen Systemen mit vielen Atomen oder auch in besonders flexiblen Molekülen auftreten. „Die numerischen Eigenschaften von Lernalgorithmen haben häufig einen stärkeren Einfluss, als die mathematische Formulierung vermuten lässt und können Ergebnisse verfälschen. Verbesserungen der numerischen Stabilität können einen weitreichenden Einfluss auf die Anwendbarkeit von Algorithmen haben“, sagt Dr. Stefan Chmiela, Forschungsgruppenleiter der Gruppe Maschinelles Lernen für Mehrkörpersysteme in BIFOLD.

Effizienz von Verfahren bestimmt die Nutzung

Ein zusätzlicher Vorteil des entwickelten Lösungsverfahrens besteht darin, dass dieses über mehrere Rechner parallelisierbar ist. Es beseitigt algorithmische Engpässe und ermöglicht die effektive Nutzung moderner paralleler Rechenhardware wie GPUs. „Der Erfolg von Algorithmen für maschinelles Lernen hängt oft davon ab, wie effizient sie auf verfügbarer Rechnerhardware ausgeführt und skaliert werden können“, erklärt Prof. Dr. Klaus-Robert Müller, Co-Direktor von BIFOLD.

„Diese Arbeit ist ein wichtiger Schritt, um Quantensimulationen von Systemen mit Hunderten von Atomen realitätsgetreu zu simulieren“, so Dr. Oliver Unke, Wissenschaftler bei Google. So führten die Wissenschaftler bereits erfolgreich Dynamiksimulationen von supramolekularen Komplexen auf anspruchvollen Langzeitskalen durch. Ähnliche Simulationen werden routinemäßig in der pharmazeutischen Industrie durchgeführt, um Verbindungen mit spezifischen Eigenschaften als potenzielle Kandidaten für neue Medikamente zu identifizieren. „Maschinelle Lern-Methoden versprechen eine Konvergenz zwischen exakten quantenmechanischen Modellen und effizienten empirischen Lösungen. Sie haben das Potenzial, die wissenschaftliche Forschung in der Quantenchemie zu beschleunigen, indem sie völlig neue Möglichkeiten bieten, atomare Wechselwirkungen in komplizierten physikalischen Systemen besser zu verstehen“, erläutert Alexandre Tkatchenko.

Weiterführende Verlinkungen

Originale Pressemitteilung

> mehr

Wissenschaftliche Publikation

> mehr

BIFOLD-Wissenschaftler:innen an der TU Berlin gelingt Simulation von komplexen Quantensystemen

2. Februar 2023/in /von Alexander Lammers

Kontakt Aktuelles

Kontakt

Dr. Stefan Chmiela

stefan@chmiela.com

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns

Mastodon
© 2023 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Anbieter verwalten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}