Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Rhein-Main Region
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Ethos des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Publikationen des Netzwerks
    • Bernstein Bulletin
    • Presse
  • Forschung und Lehre
    • Forschung und Lehre
    • Meet the Scientist
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
      • Podcasts
  • Karriere
    • Karriere
    • Stellenangebote
    • Praktika und Abschlussarbeiten
  • Bernstein Conference
    • Bernstein Conference
    • Program
    • Abstract Submission
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel grants
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
    • Past Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Nervenzellen im visuellen System von Fliegen sind überraschend heterogen verschaltet
Mainz – 27. Februar 2024

Nervenzellen im visuellen System von Fliegen sind überraschend heterogen verschaltet

Analyse des Konnektoms von Drosophila melanogaster im Rahmen des FlyWire-Konsortiums gibt neue Einblicke in Organisation des Sehsystems

Eine Tm9-Zelle isoliert dargestellt (l.) sowie mit allen präsynaptischen Neuronen, die mithilfe von FlyWire.ai rekonstruierten wurden (r.). Foto: Marion Silies

Beteiligte Bernstein Mitglieder: Marion Silies

Das Gehirn ist ein komplexes Organ, nicht nur beim Menschen. Selbst im Gehirn der Fliege sind über 100.000 Nervenzellen mit mehreren Millionen Synapsen miteinander verknüpft. Nun hat ein internationales Konsortium zum ersten Mal die Nervenzellen und ihre synaptischen Verbindungen im Gehirn einer weiblichen Taufliege, die den wissenschaftlichen Namen Drosophila melanogaster trägt, vollständig rekonstruiert und veröffentlicht. Mit ihrer Arbeit an den optischen Loben, dem Teil des Gehirns, in dem visuelle Informationen verarbeitet werden, leistete die Arbeitsgruppe von Prof. Dr. Marion Silies an der Johannes Gutenberg-Universität Mainz (JGU) einen wichtigen Beitrag zu dem Gesamtergebnis. Dabei zeigte sich, dass ein bestimmter Zelltyp im Auge der Taufliege entgegen den Erwartungen nicht einheitlich verknüpft ist. „Das stellt unsere Vorstellung, wie das Auge organisiert ist, infrage“, erklärt die Neurobiologin zu den Ergebnissen.

FlyWire-Konsortium veröffentlicht das erste vollständige Konnektom der Fliege

Unter der Leitung der Princeton University und mithilfe von künstlicher Intelligenz hat das FlyWire-Konsortium das gesamte Konnektom des Gehirns von Drosophila melanogaster erfasst. Das Konnektom zeigt die Verbindungen zwischen den Nervenzellen, die für ihre Funktion eine entscheidende Rolle spielen. Beigetragen haben dazu Hunderte von Wissenschaftler:innen aus der ganzen Welt. So wurden 130.000 Nervenzellen mit 50 Millionen Synapsen rekonstruiert, indem zunächst elektronenmikroskopische Aufnahmen von hauchdünnen Schnitten des Gehirns erstellt und die Bilder anschließend zusammengesetzt wurden. „Der Datensatz ist bisher einmalig und wird das gesamte Feld der Neurobiologie revolutionieren“, erwartet Marion Silies. „Wir können anhand dieser Daten künftig die Funktionsweise des Gehirns viel besser erforschen.“

Die Arbeitsgruppe von Marion Silies am Institut für Entwicklungsbiologie und Neurobiologie hat sich auf das Sehsystem spezialisiert und damit sowohl zum Gesamterfolg von FlyWire beigetragen als auch neue Aspekte zur Verarbeitung visueller Informationen entdeckt. Im Zentrum dieser Entdeckung stehen bestimmte Transmedulla-Zelltypen, die in den 800 Einzelaugen einer Taufliege kurz hinter den Photorezeptoren sitzen. „Visuelle Systeme haben eine homogene Struktur, und man dachte, dass sich diese Homogenität bis zur Ebene der synaptischen Verschaltung hält“, so Silies. Das Prinzip, dass das Auge homogen verschaltet ist, sei eine konzeptionelle Idee nicht nur bei Drosophila, sondern auch beim Menschen. Das wäre sinnvoll, weil die Umwelt in unterschiedlichen Regionen des Auges gleichmäßig verarbeitet und wahrgenommen werden soll.

Nervenzellen sind nicht so einheitlich verschaltet, wie gedacht

„Jetzt haben wir allerdings herausgefunden, dass die Nervenzellen insbesondere eines Transmedulla-Zelltyps, genannt Tm9, nicht einheitlich, sondern unterschiedlich verschaltet sind.“ Früher war bereits aufgefallen, dass die Zellen auf einen bestimmten Reiz nicht immer in gleicher Art und Weise reagieren. Dies könnte nun die Erklärung dafür sein. „Offenbar sieht das Auge der Fliege an verschiedenen Punkten unterschiedlich.“ Für Silies stellt sich in der Folge die Frage, wozu die Heterogenität im visuellen System der Taufliege dient. Ist sie ein Nebenprodukt oder ist die Variabilität notwendig, um robuste Funktionen zu erfüllen? Dieser grundlegenden zentralen Frage wird Silies im Rahmen der Forschungsgruppe RobustCircuit weiter nachgehen. Daran sind außer ihrem Team weitere Wissenschaftler:innen der JGU, der Freien Universität Berlin, der Humboldt-Universität zu Berlin und des Zuse-Instituts Berlin beteiligt. Die Deutsche Forschungsgemeinschaft (DFG) fördert die Forschungsgruppe 5289 seit 2022. Die jetzige Arbeit zum Sehsystem von Drosophila wurde außerdem von einem ERC Starting Grant von Marion Silies finanziell getragen.

Um sicherzustellen, dass die Befunde zu den Tm9-Zellen wegen der Erhebung an nur einer weiblichen Fliege keine Ausnahme darstellen, hat die Gruppe zusätzlich lichtmikroskopische Aufnahmen an mehreren Fliegen vorgenommen und die Erkenntnisse somit unterfüttert. „Als nächstes gilt es herauszufinden, ob die Variabilität einem bestimmten Schema folgt oder rein zufällig auftritt“, sagt Marion Silies zu den weiteren Aufgaben.

Weiterführende Verlinkungen

Originale Pressemitteilung

> mehr

Wissenschaftliche Publikation

> mehr

Nervenzellen im visuellen System von Fliegen sind überraschend heterogen verschaltet

19. März 2024/in /von Alexander Lammers

Kontakt Aktuelles

Kontakt

Prof. Dr. Marion Silies

Institut für Entwicklungsbiologie und Neurobiologie (IDN)
Johannes Gutenberg-Universität Mainz
55099 Mainz

+49 6131 39-28966
msilies@uni-mainz.de

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns auf

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen Nach oben scrollen Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten Sie {vendor_count} Lieferanten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}