Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Meet the Scientist
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Presse
    • Publikationen des Netzwerks
    • Bernstein Bulletin
  • Forschung und Lehre
    • Forschung und Lehre
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series 2023
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
    • Ethos des Bernstein Netzwerks
  • Karriere
    • Karriere
    • Stellenangebote
    • Verstärken Sie unser Team
  • Bernstein Conference
    • Bernstein Conference
    • Call for Satellite Workshops
    • General Information
      • Tentative Schedule
      • Past Conferences
    • FAQ
  • DE
  • EN
  • Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Im Geäst der Nervenzellen
München – 7. März 2019

Im Geäst der Nervenzellen

Wie rechnen Nervenzellen? Dieser fundamentalen Frage sind Neurowissenschaftler um Andreas Herz auf der Spur. Mit einer neuen Methode können die Forscher das komplexe Zusammenspiel in den Nervenfortsätzen besser als bislang entflechten.

Bild: Wikimedia Commons: MethoxyRoxy, Farbadaption: Bernstein Network

/LMU/ Damit Menschen fühlen, lernen und handeln können, müssen alle Informationen, die sie über ihre Umwelt erhalten, in Nervensignale übersetzt und im Gehirn verarbeitet werden. Dafür empfängt und verrechnet jede Nervenzelle der Großhirnrinde die Signale Tausender anderer Neuronen. „Um die Funktion des Gehirns zu verstehen, ist es essenziell aufzuklären wie Nervenzellen operieren“, sagt Andreas Herz, Professor für Computational Neuroscience. Mit seinem an der LMU und dem Bernstein Zentrum München angesiedelten Team hat Herz nun ein neues Analysewerkzeug entwickelt, um die Berechnungen einzelner Neuronen zu charakterisieren. Wie die Wissenschaftler im Fachmagazin PLoS Computational Biology berichten, hängt die Signalverarbeitung stark davon ab, an welcher Stelle der Zelle der synaptische Input erfolgt.

Perspektivenwechsel

Die spezifischen Berechnungen einer Nervenzelle werden von der geometrischen Form und den biophysikalischen Eigenschaften ihres sogenannten dendritischen Baumes geprägt. Dendriten sind verästelte Fortsätze, die vom Nervenzellkörper ähnlich wie die Zweige eines Baums auswachsen und Kontaktstellen (Synapsen) für andere Zellen bilden. Synaptische Eingänge werden zunächst lokal integriert und dann mit den Ergebnissen anderer lokaler Berechnungen kombiniert bevor sie weitergeleitet werden. „Um solche komplizierten Kaskaden zu analysieren, müssen Forscher mehrere synaptische Eingänge gleichzeitig aktivieren“, sagt Stefan Häusler, der Leiter der Studie. Sowohl experimentell als auch in Computersimulationen wurde dafür in der Regel bislang untersucht, wie sich das Ausgangssignal einer Zelle verändert, wenn ihre Eingänge variiert werden.

Aufgrund der Komplexität der dendritischen Verarbeitungskette ist es jedoch eine Herausforderung, festzustellen, welcher Verarbeitungsschritt eine beobachtete Änderung tatsächlich verursacht hat. „Trotz ihrer grundlegenden Bedeutung für die Gehirnfunktion ist man noch weit davon entfernt, die dendritische Verarbeitung zu verstehen“, sagt Herz. Nun hat der Neurowissenschaftler mit seinem Team einen neuen Ansatz entwickelt: Anstatt wie bisher zu analysieren, wie sich die Zellreaktion bei unterschiedlichen Eingangsreizen ändert, wechselten die Forscher die Perspektive: Sie halten die Reaktion des Neurons konstant. „Dadurch bekommen wir wertvolle Einblicke in das Zusammenspiel der Eingänge“, sagt Florian Eberhardt, der Erstautor der Arbeit: Wenn die Forscher beispielsweise einen linearen Anstieg eines Eingangsreizes durch eine gleich große Verringerung an einer zweiten Stelle ausgleichen müssen, um die Zellreaktion konstant zu halten, lässt dies den Rückschluss zu, dass beide Signale im Dendritenbaum addiert wurde. Wenn dagegen die relativen Änderungen ausgeglichen sein müssen, deutet dies auf eine Multiplikation hin. Die „Iso-Response-Methode“ ermöglicht es den Forschern, einzelne Verarbeitungsschritte trotz der enormen Komplexität des dendritischen Baumes zu entwirren.

„Wir haben unsere Methode in Computersimulationen von Pyramidenzellen – das ist der häufigste Zelltyp in der Großhirnrinde – eingesetzt. Damit konnten wir zeigen, dass bestimmte Arten von dendritischen Ästen rein im Feed-Forward-Verfahren arbeiten: Sie leiten das resultierende Signal ohne Rückkopplung nur in eine Richtung weiter“, sagt Häusler. Typischerweise ist dies der Fall, wenn sich die dendritischen Äste in der Nähe des Zellkörpers befinden. Dendritische Äste, die weiter vom Zellkörper entfernt sind, zeigen dagegen komplexeres Verhalten, das auf Rückkopplungseffekte schließen lässt.

„Bisher haben wir uns auf ein etabliertes Computermodell einer Pyramidenzelle konzentriert. Unsere Ergebnisse deuten nun daraufhin, dass die unterschiedlichen Arten dendritischer Äste differenzierte Funktionen übernehmen, je nachdem, wo sie lokalisiert sind.“, sagt Herz. „Im nächsten Schritt wollen wir unseren Ansatz in Experimente integrieren, um die dendritischen Berechnungen realer, biologischer Neuronen zu enthüllen. Das wird unser Verständnis von Hirndynamik und -berechnung systematisch verbessern.“

>> zur Pressemitteilung der LMU

Publikation

Tuft dendrites of pyramidal neurons operate as feedback-modulated functional subunits
Florian Eberhardt, Andreas V.M. Herz, Stefan Häusler. PLoS Computational Biology 2019

Im Geäst der Nervenzellen

12. Januar 2021/in /von Alexandra Stein

Kontakt Aktuelles

Kontakt

Dr. Stefan Häusler

Computational Neuroscience
Department Biology II

+49 89 2180-74822
haeusler@biologie.uni-muenchen.de

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns

Mastodon
© 2023 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Anbieter verwalten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}