Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Rhein-Main Region
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Ethos des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Publikationen des Netzwerks
    • Bernstein Bulletin
    • Presse
  • Forschung und Lehre
    • Forschung und Lehre
    • Meet the Scientist
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
      • Podcasts
  • Karriere
    • Karriere
    • Stellenangebote
    • Praktika und Abschlussarbeiten
  • Bernstein Conference
    • Bernstein Conference
    • Program
    • Abstract Submission
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel grants
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
    • Past Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Wie das Gehirn Bewegungen bei Unsicherheit steuert
Göttingen – 10. April 2025

Wie das Gehirn Bewegungen bei Unsicherheit steuert

Eine neue Studie von Neurowissenschaftler*innen am Deutschen Primatenzentrum (DPZ) – Leibniz-Institut für Primatenforschung in Göttingen zeigt: Unser Gehirn geht mit verschiedenen Formen von visueller Unsicherheit bei Bewegungen auf unterschiedliche Weise um. Je nachdem, um welche Art von Unsicherheit es sich handelt, wirkt sich das auf die Planung und Ausführung von Bewegungen im Gehirn ganz verschieden aus. Diese Erkenntnisse könnten dazu beitragen, Gehirn-Computer-Schnittstellen zu optimieren, die zum Beispiel Menschen mit Lähmungen helfen, Prothesen oder Computer allein mit ihren Gedanken zu steuern (Nature Communications).

Ohne klare Sicht muss Ihr Gehirn abschätzen, wo sich das Glas befindet und wo Ihre Hand ist – eine Herausforderung, die oft zu unpräzisen Bewegungen führt.

Beteiligte Bernstein Mitglieder: Alexander Gail

Stellen Sie sich vor, Sie wachen nachts durstig auf und müssen im Dunkeln nach einem Glas Wasser greifen. Ohne klare Sicht muss Ihr Gehirn abschätzen, wo sich das Glas befindet und wo Ihre Hand ist – eine Herausforderung, die oft zu unpräzisen Bewegungen führt. Das Gehirn verarbeitet dabei zwei zentrale Informationen: Es muss wissen, wo sich die Hand befindet und wohin sie bewegt werden soll. Doch was passiert, wenn diese Informationen ungenau sind? Diese Problematik der visuellen Unsicherheit bei einer Bewegungssteuerung untersuchten die Wissenschaftler*innen der Forschungsgruppe Sensomotorik am DPZ in ihrer Studie mit Rhesusaffen.

In dem Experiment bewegten die Affen einen Cursor auf einem Bildschirm – mit der Hand über eine Art Joystick. Dabei wurden zwei Arten von Unsicherheiten untersucht: Bei der Zielunsicherheit wurde das Ziel der Bewegung durch mehrere verstreute Objekte dargestellt, sodass unklar blieb, wo genau sich das Ziel befand. Bei der Feedback-Unsicherheit wurde der Cursor durch mehrere verstreute, kleine Objekte ersetzt, sodass unklar blieb, wo sich die eigene Hand genau befand. Zusätzlich testeten die Forschenden die Auswirkungen der Feedback-Unsicherheit während die Affen den Cursor durch eine Gehirn-Computer-Schnittstelle steuerten, quasi durch bloße Gedanken. In diesem Fall steht nur visuelle Information als Feedback über die eigene Bewegung zur Verfügung, während bei echten Armbewegungen der Körper auch über andere Sinnessysteme die Position der Hand kennt.

Unterschiedliche Auswirkungen auf die Bewegung

Die Ergebnisse zeigen, dass das Gehirn unterschiedlich auf Unsicherheiten reagiert: Die Zielunsicherheit beeinträchtigt vor allem die Planung und den Beginn der Bewegung. Wenn die Affen nicht genau wussten, wo das Ziel war, waren die Bewegungen von Anfang an weniger präzise, also ungenau geplant. Das zeigte sich auch in der Aktivität von Gehirnzellen im motorischen Kortex. Die Beeinträchtigung der Bewegungen durch Feedback-Unsicherheit zeigte sich dagegen nur dann deutlich, wenn die Affen vollständig auf das visuelle Feedback angewiesen waren – wie bei der Steuerung mittels Gehirn-Computer-Schnittstelle. In diesem Fall beeinflusst die Feedback-Unsicherheit vor allem die präzise Ausführung der Bewegung.

Die Forschenden stellten zudem fest, dass die neuronale Aktivität im motorischen Kortex sowohl Ziel- als auch Feedback-Unsicherheit widerspiegelt, diese beiden Formen der Unsicherheit jedoch zu unterschiedlichen Zeitpunkten verarbeitet werden. Dies deutet darauf hin, dass das Gehirn die Information über das Ziel und die eigene Position in unterschiedlichen Phasen der Bewegungssteuerung integriert.

Relevanz für Gehirn-Computer-Schnittstellen

Die Erkenntnisse könnten dazu beitragen, Gehirn-Computer-Schnittstellen (engl.: brain computer interface, kurz BCIs) zu verbessern. Diese Technologie ermöglicht es beispielsweise gelähmten Menschen, Prothesen oder Computer allein mit ihren Gedanken zu steuern. Da sich Nutzer*innen von BCIs meist stark auf visuelles Feedback verlassen, da ihnen oft nur dieses zur Verfügung steht, sind sie besonders anfällig für Unsicherheiten in der Wahrnehmung der eigenen Bewegung. Eine vielversprechende Lösung könnte die Integration zusätzlicher sensorischer Signale sein. So könnten etwa Vibrationsmotoren, also ein taktiles Feedback den Nutzer*innen zusätzliche Informationen über die Bewegung ihrer Hand liefern und Unsicherheiten ausgleichen. Eine entsprechende Fortsetzung der Versuche und Weiterentwicklung des Forschungsansatzes führt die Forschungsgruppe unter Alexander Gail im Rahmen des neuen Sonderforschungsbereichs SFB 1690 bereits durch.

„Unsere Ergebnisse zeigen, dass das Gehirn Unsicherheiten ausgleichen kann, wenn alternative Informationsquellen zur Verfügung stehen. Dies ist ein entscheidender Faktor für die Verbesserung von BCIs, da Nutzer*innen aktuell meist oft auf visuelles Feedback beschränkt sind. Zusätzliche sensorische Reize könnten dabei helfen, die Steuerung von Neuroprothesen präziser und intuitiver zu gestalten.“

– Dr. Lukas Amann, Neurowissenschaftler in der Forschungsgruppe Sensomotorik und gemeinsam mit Virginia Casasnovas Hauptautor der Studie

 

Die Studie liefert somit wichtige Erkenntnisse darüber, wie das Gehirn mit sensorischer Unsicherheit umgeht – eine Grundlage für die Weiterentwicklung von Technologien, die Menschen mit motorischen Beeinträchtigungen helfen können.

Weiterführende Verlinkungen

Originale Pressemitteilung

> mehr

Originale Publikation

> mehr

Wie das Gehirn Bewegungen bei Unsicherheit steuert

17. April 2025/in /von Elena Reiriz Martinez

Kontakt Aktuelles

Kontakt

Dr. Lukas Amann

Deutsches Primatenzentrum
Kellnerweg 4
37077 Göttingen

0551 3851 342
LAmann@dpz.eu

Prof. Dr. Alexander Gail

Deutsches Primatenzentrum
Kellnerweg 4
37077 Göttingen

0551 3851 358
AGail@dpz.eu

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns auf

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen Nach oben scrollen Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten Sie {vendor_count} Lieferanten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}