Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Köln
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhein-Main Region
      • Bernstein Node Taiwan
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Ethos des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Publikationen des Netzwerks
    • Bernstein Bulletin
    • Presse
  • Forschung und Lehre
    • Forschung und Lehre
    • Meet the Scientist
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
      • Podcasts
  • Karriere
    • Karriere
    • Stellenangebote
    • Praktika und Abschlussarbeiten
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Nervensysteme von Insekten sind Vorbild für effizientes maschinelles Lernen
Köln – 2. November 2020

Nervensysteme von Insekten sind Vorbild für effizientes maschinelles Lernen

Studie erforscht Funktionsweise der Nervensysteme von Fruchtfliegen bei der Nahrungssuche / Daten sind für Entwicklung und Steuerung künstlicher Intelligenz nützlich.

Fliege sitzt auf grünem Blatt/ Fly sitting on a green leaf

Symbolbild. Foto von Rob Pumphrey auf Unsplash.

/UoC/ Kölner Zoologen haben die Nervensysteme von Insekten erforscht, um die Prinzipien biologischer Berechnungen zu untersuchen und sie auf maschinelles Lernen zu übertragen. Hierfür haben sie analysiert, wie Insekten während der Nahrungssuche Eindrücke aufnehmen, daraus lernen und die Informationen später abrufen, um komplexe und dynamische Probleme zu lösen. Die Ergebnisse legen nahe, dass die Umwandlung von sensorischen Informationen bei der Gedächtnisbildung von Insekten für maschinelles Lernen und künstliche Intelligenz mit komplexen Szenarien genutzt werden kann. Die Studie ist im Fachjournal PNAS veröffentlicht worden.

Lebende Organismen zeigen bemerkenswerte Fähigkeiten bei der Bewältigung von Problemen, die ihnen durch komplexe und dynamische Umgebungen gestellt werden. Zudem können sie ihre Erfahrungen verallgemeinern, um ihr Verhalten rasch anzupassen. Zoologen der Universität Köln haben erforscht, wie die Navigation der Fruchtfliege bei der Nahrungssuche funktioniert. In einem Computermodell haben sie die Reaktionen des Nervensystems der Fruchtfliege auf bestimme Duftstoffe der Futterquelle analysiert. „Wir haben unser Modell des Fliegengehirns zunächst genau so trainiert, wie man auch Insekten im Experiment trainiert. Dazu haben wir in der Simulation einen bestimmten Duft zusammen mit einer Belohnung und einen zweiten Duft ohne Belohnung präsentiert. Das Modell erlernt in nur wenigen Geruchsdarbietungen eine robuste Repräsentation des belohnten Duftes und ist danach in der Lage, die Quelle dieses Duftes in einer räumlich komplexen und zeitlich dynamischen Umwelt zu finden.“ sagt der Informatiker Dr. Hannes Rapp, der das Modell im Rahmen seiner Promotion am Institut für Zoologie der Universität zu Köln erstellt hat.

Das erstellte Model ist damit in der Lage, selbständig zu lernen und benötigt hierfür nur eine sehr geringe Datenbasis. „Für unser Modell nutzen wir die besonderen Eigenschaften der biologischen Informationsverarbeitung in Nervensystemen aus“, erklärt Prof. Dr. Nawrot, Leiter der Studie. „Diese sind insbesondere eine schnelle und parallele Verarbeitung von sensorischen Reizen mittels kurzzeitiger Nervenimpulse sowie die Bildung eines verteilten Gedächtnisses durch die gleichzeitige Modifikation vieler synaptischer Schaltstellen während des Lernvorgangs.“ Das dem Modell zu Grunde liegende Prinzip kann auch für künstliche Intelligenz genutzt werden. Dies ermöglicht es, einem künstlichen Agenten, deutlich effizienter zu lernen, als bisher und das Gelernte dann in einer veränderlichen Umwelt anzuwenden.

>> zur originalen Pressemitteilung

Originalpublikation

H. Rapp, M. P. Nawrot (2020). A spiking neural program for sensorimotor control during foraging in flying insects. PNAS DOI: doi.org/10.1073/pnas.2009821117

Nervensysteme von Insekten sind Vorbild für effizientes maschinelles Lernen

25. November 2020/in /von Alexandra Stein

Kontakt Aktuelles

Kontakt

Prof. Dr. Martin Nawrot

Institut für Zoologie

+49 221 470-7307
martin.nawrot@uni-koeln.de

Jan Voelkel

Presse und Kommunikation

+49 221 470-2356
j.voelkel@verw.uni-koeln.de

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns auf

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen Nach oben scrollen Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten Sie {vendor_count} Lieferanten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}