Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Rhein-Main Region
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Ethos des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Publikationen des Netzwerks
    • Bernstein Bulletin
    • Presse
  • Forschung und Lehre
    • Forschung und Lehre
    • Meet the Scientist
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
      • Podcasts
  • Karriere
    • Karriere
    • Stellenangebote
    • Praktika und Abschlussarbeiten
  • Bernstein Conference
    • Bernstein Conference
    • Program
    • Abstract Submission
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel grants
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
    • Past Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Forschende simulieren mit KI visuelles System im Gehirn der Fruchtfliege
Tübingen – 11. September 2024

Forschende simulieren mit KI visuelles System im Gehirn der Fruchtfliege

Internationalem Forschungsteam aus Tübingen und Virginia gelingt durch künstliches neuronales Netz erstmals Vorhersage der Berechnungen eines lebenden Gehirns

Licht tritt in das Facettenauge der Fliege ein (links im Bild) und veranlasst Photorezeptoren, elektrische Signale durch ein komplexes neuronales Netzwerk zu senden (Modell rechts im Bild), wodurch die Fliege Bewegungen erkennen kann. Grafik: I. Siwanowicz, F. Loesche, HHMI Janelia; J. Lappalainen, Universität Tübingen

Beteiligte Bernstein Mitglieder: Janne Lappalainen, Jakob Macke

Informationen im Gehirn werden über elektrische Signale zwischen spezialisierten Zellen, den Neuronen, übertragen. Große Netzwerke solcher Neuronen steuern Wahrnehmungen, Verhalten und Kognition. Die Wissenschaft hat lange nach Möglichkeiten gesucht, neuronale Netze im Gehirn mit Computern zu simulieren, um zu verstehen, wie sie funktionieren. Mit neuen Erkenntnissen über die neuronalen Schaltpläne im Gehirn der Fruchtfliege und Methoden der künstlichen Intelligenz gelang es nun Forschenden, ein neuronales Netz zu knüpfen, welches zuvor kaum Vorstellbares leistet: Es sagt die Aktivität einzelner Neuronen vorher, ohne dass Messungen an einem lebenden Gehirn vorgenommen werden müssen. Die Studie von Professor Jakob Macke und Janne Lappalainen von der Universität Tübingen und Dr. Srinivas Turaga und Kollegen vom Janelia Research Campus des Howard Hughes Medical Institute in Ashburn, Virginia (USA), ist am Mittwoch in der Fachzeitschrift Nature erschienen.

Seit Jahrzehnten messen Neurowissenschaftlerinnen und -wissenschaftler neuronale Aktivitäten lebender Tiere, weil sie die Zusammenhänge zwischen Gehirnaktivität und Verhalten besser verstehen wollen. Diese Experimente haben bahnbrechende Erkenntnisse über die Funktionsweise des Gehirns erbracht – aber ein Großteil des Gehirns ist nach wie vor unerforscht.

Die Teams aus Tübingen und Virginia haben nun mithilfe von künstlicher Intelligenz und des Konnektoms, einer Karte der Neuronen und ihrer im Hirngewebe bestehenden Verbindungen, die Aktivität der Neuronen im lebenden Gehirn vorhergesagt. Indem sie lediglich Informationen aus dem Konnektom des visuellen Systems der Fruchtfliege verwenden sowie Annahmen über die Funktionen des Schaltkreises machen, haben die Forscher eine KI-Simulation erstellt, die die Aktivität jedes Neurons im Schaltkreis vorhersagen kann. „Wir verfügen nun über eine Berechnungsmethode, mit der wir Messungen des Konnektoms in Vorhersagen über die neuronale Aktivität und die Gehirnfunktion umsetzen können, ohne zuerst aufwändige Messungen am lebenden Neuron durchführen zu müssen“, sagt Srinivas Turaga, Leiter der Janelia-Forschungsgruppe und einer der Hauptautoren der neuen Studie.

Das Forschungsteam nutzte das Konnektom, um eine detaillierte mechanistische Netzwerksimulation des visuellen Systems der Fliege zu erstellen, bei der jedes modellierte Neuron einem realen Neuron und jede modellierte Synapse einer realen Synapse im Gehirn entspricht. Obwohl sie die Dynamik der Neuronen im realen Gewebe nicht kannten, konnte das Team diese unbekannten Parameter mit Hilfe von Deep-Learning-Methoden vorhersagen. Dazu verbanden sie die Informationen aus dem Konnektom mit ihrem Wissen über die Funktion des Schaltkreises: Dem Erkennen von Bewegungen. „Mit dieser Kombination konnten wir prüfen, ob unser auf dem Konnektom basierende Ansatz ein gutes Modell des Gehirns liefern kann“, sagt Janne Lappalainen, Doktorand an der Universität Tübingen und Erstautor der Studie.

Das neue Modell sagt die Aktivität von 64 verschiedenen Neuronentypen des visuellen Systems der Fruchtfliege voraus und reproduziert die Ergebnisse aus über zwei Dutzend experimentellen Studien der letzten zwei Jahrzehnte. Laut den Autoren hat die neue Arbeit das Potenzial, die Hirnforschung grundlegend zu verändern, indem Vorhersagen über die Aktivität einzelner Neurone nun direkt aus dem Konnektom abgeleitet werden können. Im Prinzip kann man mit dem Modell jedes beliebige Experiment simulieren, so dass daraus abgeleitete Vorhersagen dann im Labor getestet werden können.

Die neue Forschungsarbeit enthält über 450 Seiten mit aus dem Modell abgeleiteten Vorhersagen, einschließlich der Identifizierung von Zellen, von denen bisher nicht bekannt war, ob sie an der Bewegungserkennung beteiligt sind, und die nun in Fruchtfliegen untersucht werden können. „Bislang bestand eine große Lücke zwischen dem statischen Konnektom und der Dynamik der Berechnungen im lebenden Gehirn. Die Frage war, ob wir diese Lücke mit einem Modell schließen können. Am konkreten Beispiel der Fruchtfliege ist uns dies nun gelungen“, sagt Jakob Macke, einer der Hauptautoren der Studie. Mit diesem Ansatz ist es möglich, künstliche neuronale Netze zu schaffen, die dem Gehirn der Fruchtfliege ähnlich sind und künftig für eine Vielzahl von Untersuchungen genutzt werden können: Zum Beispiel könnte mit ihnen untersucht werden, warum biologische neuronale Netze um Größenordnungen effizienter sind als künstliche neuronale Netze.

Janne Lappalainen ist Doktorand an der Universität Tübingen und der International Max Planck Research School„Intelligente Systeme“ und Gastwissenschaftler am Janelia Research Campus des HHMI. Professor Jakob Macke leitet die Gruppe „Maschinelles Lernen in der Wissenschaft“, als Teil des Tübinger Exzellenzclusters „Maschinelles Lernen: Neue Perspektiven für die Wissenschaft” und ist Forscher am Tübingen AI Center sowie dem „Bernstein Center for Computational Neuroscience Tübingen“. Das Projekt wurde zum Teil durch den ERC Consolidator Grant DeepCoMechTome finanziert.

Weiterführende Verlinkungen

Originale Pressemitteilung

> mehr

Wissenschaftliche Publikation

> mehr

Forschende simulieren mit KI visuelles System im Gehirn der Fruchtfliege

12. September 2024/in /von Alexander Lammers

Kontakt Aktuelles

Kontakt

Prof. Dr. Jakob Macke

Wissenschaftlicher Ansprechpartner
Universität Tübingen
Exzellenzcluster „Maschinelles Lernen in der Wissenschaft“

jakob.macke@uni-tuebingen.de

Tilman Wörtz

Pressekontakt
Eberhard Karls Universität Tübingen
Hochschulkommunikation

tilman.woertz@uni-tuebingen.de

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns auf

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen Nach oben scrollen Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten Sie {vendor_count} Lieferanten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}