Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Köln
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhein-Main Region
      • Bernstein Node Taiwan
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Ethos des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Publikationen des Netzwerks
    • Bernstein Bulletin
    • Presse
  • Forschung und Lehre
    • Forschung und Lehre
    • Meet the Scientist
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
      • Podcasts
  • Karriere
    • Karriere
    • Stellenangebote
    • Praktika und Abschlussarbeiten
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Das Bernstein Netzwerk gratuliert John Hopfield und Geoffrey Hinton zum Nobel Preis in Physik
Stockholm – 8. Oktober 2024

Das Bernstein Netzwerk gratuliert John Hopfield und Geoffrey Hinton zum Nobel Preis in Physik

Die beiden diesjährigen Nobelpreisträger für Physik haben Werkzeuge aus der Physik genutzt, um Methoden zu entwickeln, die die Grundlage für das heutige leistungsstarke maschinelle Lernen bilden. John Hopfield schuf einen assoziativen Speicher, der Bilder und andere Arten von Mustern in Daten speichern und rekonstruieren kann. Geoffrey Hinton erfand eine Methode, die selbstständig Eigenschaften in Daten finden und so Aufgaben wie die Identifizierung bestimmter Elemente in Bildern erfüllen kann.

©Johan Jarnestad/The Royal Swedish Academy of Sciences

Wenn wir von künstlicher Intelligenz sprechen, meinen wir oft das maschinelle Lernen mit künstlichen neuronalen Netzen. Diese Technologie wurde ursprünglich von der Struktur des Gehirns inspiriert. In einem künstlichen neuronalen Netz werden die Neuronen des Gehirns durch Knoten dargestellt, die unterschiedliche Werte haben. Diese Knoten beeinflussen sich gegenseitig durch Verbindungen, die mit Synapsen verglichen werden können und die stärker oder schwächer werden können. Das Netzwerk wird trainiert, indem zum Beispiel stärkere Verbindungen zwischen Knoten mit gleichzeitig hohen Werten aufgebaut werden. Die diesjährigen Preisträger haben seit den 1980er Jahren wichtige Arbeiten mit künstlichen neuronalen Netzen durchgeführt.

John Hopfield hat ein Netzwerk erfunden, das eine Methode zur Speicherung und Wiederherstellung von Mustern verwendet. Wir können uns die Knotenpunkte als Pixel vorstellen. Das Hopfield-Netzwerk nutzt die Physik, die die Eigenschaften eines Materials aufgrund seines atomaren Spins beschreibt – eine Eigenschaft, die jedes Atom zu einem winzigen Magneten macht. Das Netzwerk als Ganzes wird auf eine Weise beschrieben, die der Energie im Spinsystem in der Physik entspricht, und wird trainiert, indem Werte für die Verbindungen zwischen den Knoten gefunden werden, damit die gespeicherten Bilder eine niedrige Energie haben. Wenn das Hopfield-Netzwerk mit einem verzerrten oder unvollständigen Bild gefüttert wird, arbeitet es sich methodisch durch die Knoten und aktualisiert deren Werte, damit die Energie des Netzwerks sinkt. Das Netz arbeitet also schrittweise, um das gespeicherte Bild zu finden, das dem unvollkommenen Bild, mit dem es gespeist wurde, am ähnlichsten ist.

Geoffrey Hinton nutzte das Hopfield-Netzwerk als Grundlage für ein neues Netzwerk, das eine andere Methode verwendet: die Boltzmann-Maschine. Diese kann lernen, charakteristische Elemente in einer bestimmten Art von Daten zu erkennen. Hinton verwendete Werkzeuge aus der statistischen Physik, der Wissenschaft von Systemen, die aus vielen ähnlichen Komponenten aufgebaut sind. Die Maschine wird trainiert, indem sie mit Beispielen gefüttert wird, die mit hoher Wahrscheinlichkeit auftreten, wenn die Maschine ausgeführt wird. Die Boltzmann-Maschine kann verwendet werden, um Bilder zu klassifizieren oder neue Beispiele für die Art von Mustern zu erstellen, für die sie trainiert wurde. Hinton hat auf dieser Arbeit aufgebaut und dazu beigetragen, die derzeitige explosionsartige Entwicklung des maschinellen Lernens in Gang zu setzen.

Die Arbeit der Preisträger hat bereits einen großen Nutzen gebracht. In der Physik nutzen wir künstliche neuronale Netze in einer Vielzahl von Bereichen, etwa bei der Entwicklung neuer Materialien mit spezifischen Eigenschaften. (Ellen Moons, Vorsitzende des Nobelkomitees für Physik)

Weiterführende Verlinkungen

Originale Pressemitteilung (englisch)

> mehr

Das Bernstein Netzwerk gratuliert John Hopfield und Geoffrey Hinton zum Nobel Preis in Physik

10. Oktober 2024/in /von Alexander Lammers

Kontakt Aktuelles

Kontakt

Eva Nevelius

The Nobel Prize Press Secretary

+46 70 878 67 63
eva.nevelius@kva.se

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns auf

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen Nach oben scrollen Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten Sie {vendor_count} Lieferanten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}