Bernstein Netzwerk Computational Neuroscience
  • Home
  • Netzwerk
    • Das Bernstein Netzwerk
    • Bernstein Zentren
      • Berlin
      • Freiburg
      • Göttingen
      • München
      • Tübingen
      • Heidelberg-Mannheim
    • Bernstein Nodes
      • Bernstein Node Bochum
      • Bernstein Node Bonn-Köln
      • Bernstein Node Chemnitz
      • Bernstein Node Hamburg
      • Bernstein Node Rhein-Main Region
      • Bernstein Node Taiwan
    • Forschungsinfrastruktur
      • High Performance Simulation and Data Analysis
      • Forschungsdaten-Management
      • Wissenschaftskommunikation
      • Wissenschaftskoordination
    • Preise und Initiativen
      • Valentin Braitenberg Award
      • Brains for Brains Nachwuchspreis
      • Bernstein SmartSteps
    • Gremien des Netzwerks
    • Ethos des Netzwerks
    • Satzung
    • Mitgliedschaft
    • Historie
    • Spenden
    • Kontakt
  • Newsroom
    • Newsroom
    • Aktuelles
    • Veranstaltungen
    • Ausschreibungen
    • Medienecho
    • Publikationen des Netzwerks
    • Bernstein Bulletin
    • Presse
  • Forschung und Lehre
    • Forschung und Lehre
    • Meet the Scientist
    • Wissenschaftler:innen finden
    • Studienprogramme
      • Masterprogramme
      • Promotionsprogramme
    • Studienangebote
      • Bernstein Student Workshop Series
      • Online Learning
      • Kurse für Fortgeschrittene
      • Praktika und Abschlussarbeiten
      • Podcasts
  • Karriere
    • Karriere
    • Stellenangebote
    • Praktika und Abschlussarbeiten
  • Bernstein Conference
    • Bernstein Conference
    • Program
      • Schedule
      • Satellite Workshops
      • Conference Dinner
    • Early Career Scientists
      • PhD Symposium
      • Postdoc Meeting
      • Travel Grants
      • Buddy Program
    • General Information
      • Important Dates & FAQ
      • Plan Your Visit
      • Press
      • Code of Conduct
      • PR Media Policy
      • Data Policy
    • Past and future Bernstein Conferences
  • DE
  • EN
  • Click to open the search input field Click to open the search input field Suche
  • Menü Menü
Sie sind hier: Startseite1 / Newsroom2 / Aktuelles3 / Wie das Gehirn den perfekten Balanceakt schafft: Studie der Dresdner Hochschulmedi­zin liefert neue Einblicke
Dresden – 14. Februar 2025

Wie das Gehirn den perfekten Balanceakt schafft: Studie der Dresdner Hochschulmedi­zin liefert neue Einblicke

Die Studie „Signatures of criticality in efficient coding networks“ liefert neue Einblicke in die grundlegenden Mechanismen der Gehirnfunktion. Dafür entwickelte ein internationales Forschungsteam in Dresden, Tübingen, Paris und Shanghai ein mathematisches Modell, um ein neuronales Netzwerk zu simulieren, das die Funktionsweise realer Gehirnzellen nachahmt. Anders als in früheren Studien wurde das Netzwerk nicht direkt auf einen kritischen Zustand ausgerichtet, sondern darauf optimiert, Informationen möglichst effizient zu verarbeiten – ähnlich wie das Gehirn im Alltag.

Das Gehirn beeindruckt durch seine einzigartige Fähigkeit, Informationen effizient zu verarbeiten und sich flexibel an wechselnde Herausforderungen anzupassen. Dem legte die Wissenschaft bislang zwei getrennte Prinzipien zugrunde: Kritikalität, also den Spagat zwischen Ordnung und Chaos, sowie die effiziente Kodierung, bei der das Gehirn überflüssige Signale reduziert und seine Ressourcen mit höchster Präzision nutzt. Eine Studie mit Beteiligung der Dresdner Hochschulmedizin, veröffentlicht in Proceedings of the National Academy of Sciences (PNAS), zeigt jedoch, dass beide Prinzipien enger miteinander verknüpft sein könnten, als bislang angenommen. © Panthermedia/Alexmit

Beteiligte Bernstein Mitglieder: Anna Levina, Shervin Safavi

 

Die Studie „Signatures of criticality in efficient coding networks“ liefert neue Einblicke in die grundlegenden Mechanismen der Gehirnfunktion. Dafür entwickelte ein internationales Forschungsteam in Dresden, Tübingen, Paris und Shanghai ein mathematisches Modell, um ein neuronales Netzwerk zu simulieren, das die Funktionsweise realer Gehirnzellen nachahmt. Anders als in früheren Studien wurde das Netzwerk nicht direkt auf einen kritischen Zustand ausgerichtet, sondern darauf optimiert, Informationen möglichst effizient zu verarbeiten – ähnlich wie das Gehirn im Alltag.

Ein zentrales Experiment bestand darin, das Rauschniveau im Netzwerk zu variieren. „Rauschen“ steht in diesem Kontext für ein Menge X an zufälligen Störungen im System. Die Forschenden wollten so herausfinden, wie diese Störungen die Leistungsfähigkeit des Netzwerks beeinflussen.

Die Ergebnisse der Simulation waren eindeutig: mittleres Rauschniveau bedeutet maximale Leistung. Bei einem moderaten Grad an Störungen zeigte das Netzwerk die beste Informationsverarbeitung. Gleichzeitig traten typische Signaturen von Kritikalität auf – darunter sogenannte „neuronale Lawinen“. Diese Aktivitätskaskaden folgen einer charakteristischen Verteilung von Größe und Häufigkeit.

Auch deutlich wurde: Zu viel oder zu wenig Rauschen schadet. Bei einem zu niedrigen Rauschniveau synchronisierten sich die Neuronen zu stark, was die Flexibilität des Netzwerks einschränkt. Zu viel Rauschen führte hingegen zu chaotischen, ineffizienten Aktivitätsmustern.

Die beste Leistung und der kritische Zustand traten also gleichzeitig auf – an einem Balancepunkt, an dem Präzision und Flexibilität perfekt aufeinander abgestimmt waren. Mit Hilfe des Modells konnten die Wissenschaftlerinnen und Wissenschaftler nachweisen, dass Kritikalität kein Zufallsphänomen ist, sondern ein natürlicher Nebeneffekt optimaler Informationsverarbeitung.

„Das Gehirn hat sich evolutionär augenscheinlich genau an diesen Balancepunkt zwischen Ordnung und Chaos angepasst“, erklärt Jun.-Prof. Dr. Shervin Safavi, Erstautor und verantwortlich für das Computational Machinery of Cognition (CMC) Lab an der Medizinischen Fakultät der TU Dresden und der Klinik für Kinder- und Jugendpsychiatrie am Universitätsklinikum. „Dieser Zustand ermöglicht nicht nur eine effiziente Verarbeitung von Informationen, sondern bereitet das Gehirn auch darauf vor, flexibel auf wechselnde Anforderungen zu reagieren.“

Ist dieses Gleichgewicht gestört, können psychische Störungen die Folge sein. Bei Schizophrenie tritt beispielsweise oft eine sogenannte Hyperkonnektivität auf, was zu chaotischen neuronalen Aktivitäten und gestörtem Denken führt. Umgekehrt lassen Depressionen oder Zwangsstörungen auf eine übermäßige Ordnung und Starrheit in den neuronalen Schaltkreisen schließen, was bedeutet, dass sich Denkmuster wiederholen und die Anpassung an neue Situationen erschwert wird. Ein besseres Verständnis dieses Gleichgewichts könnte neue Wege für gezieltere Behandlungen eröffnen, die das Gleichgewicht der Gehirnfunktion wiederherstellen.

„Durch die Untersuchung der Kritikalität des Gehirns können wir möglicherweise Prinzipien aufdecken, die nicht nur unser Verständnis von Kognition und geistiger Gesundheit verbessern, sondern auch die Entwicklung robusterer und anpassungsfähigerer künstlicher Intelligenzsysteme ermöglichen“, hofft Shervin Safari. „So könnten neuronale Netze, die sich an der Kritikalität orientieren, eine höhere Recheneffizienz und Widerstandsfähigkeit erreichen und die bemerkenswerte Fähigkeit des Gehirns widerspiegeln, Stabilität und Flexibilität in Einklang zu bringen.“

Weiterführende Verlinkungen

Originale Pressemitteilung

> mehr

Originale Publikation

> mehr

Wie das Gehirn den perfekten Balanceakt schafft: Studie der Dresdner Hochschulmedi­zin liefert neue Einblicke

18. Februar 2025/in /von Alexandra Stein

Kontakt Aktuelles

Kontakt

Jun-Prof. Dr. Shervin Safavi

Computational Neuroscience
Klinik für Kinder- und Jugendpsychiatrie
Medizinische Fakultät
TU Dresden

+49 351 45817367
shervin.safavi@ukdd.de

Bernstein Netzwerk Computational Neuroscience Logo

Mitglied werden
Satzung
Spenden
Newsletter abonnieren

 

Folgen Sie uns auf

LinkedIn
Bluesky
Vimeo
X
© 2025 Bernstein Netzwerk Computational Neuroscience
  • Kontakt
  • Impressum
  • Datenschutz
Nach oben scrollen Nach oben scrollen Nach oben scrollen
Cookie-Zustimmung verwalten
Wir verwenden Cookies, um unsere Website und unseren Service zu optimieren.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Verwalten Sie {vendor_count} Lieferanten Lesen Sie mehr über diese Zwecke
Einstellungen
{title} {title} {title}